2017. február

RAS Extension Pyro[®] beépülő modul – Rövid útmutató

A 2.0-s verziójú PyroMark Q24 szoftvert futtató PyroMark[®] Q24 készülékeken való telepítésre és használatra

Sample to Insight

A RAS Extension Pyro beépülő modul bemutatása

A RAS Extension Pyro beépülő modul csomagja a következőket tartalmazza:

- RAS Extension Pyro beépülő modul Rövid útmutató
- Két telepítőfájl
- Referenciajelentés a RAS Extension Pyro beépülő modul működésének ellenőrzésére

Megjegyzés: A RAS Extension Pyro beépülő modul kizárólag a NRAS Pyro kitekkel és RAS Extension Pyro kitekkel, a NRAS Pyro kitek és a RAS Extension Pyro kitek kézikönyvében ismertetett alkalmazási területeken használható.

A RAS Extension Pyro beépülő modul telepítése

Fontos: A RAS Extension Pyro beépülő modul csak 2.0-s verziójú PyroMark Q24 szoftvert futtató PyroMark Q24 készülékekre telepíthető.

- 1. Zárja be a 2.0-s PyroMark Q24 szoftvert, ha meg van nyitva.
- 2. Nyissa meg a telepítési *.zip fájlt, és csomagolja ki a fájlokat.
- 3. Kattintson duplán a setup.exe fájlra.
- 4. Kövesse a megjelenő párbeszédpaneleken látható utasításokat.
- Indítsa el a 2.0-s PyroMark Q24 szoftvert. Az indítást követően AQ módban megjelenik a RAS Extension Pyro beépülő modul jelentése a "Reports" (Jelentések) menü "AQ Add On Reports/RAS Extension" (AQ bővítmény jelentései / RAS Extension) menüpontjában.
- Ellenőrizze a beépülő modul működését (lásd alább "A RAS Extension Pyro beépülő modul működésének ellenőrzése" című részt).

A RAS Extension Pyro beépülő modul működésének ellenőrzése

Fontos: Az ellenőrzést mindig el kell végezni, ha új szoftvert telepítenek a számítógépre, vagy frissítik a számítógép valamely szoftverét.

A következő lépések segítségével ellenőrizheti a szoftver megfelelő működését, illetve azt, hogy a számítógépen végzett módosítások hatással voltak-e a szoftverre.

- A hivatkozásokat tartalmazó böngészőfelületen nyissa meg a "Shortcuts/Example Files/PyroMark Runs/RAS Extension" (Hivatkozások/Mintafájlok/PyroMark futtatások/RAS Extension) mappastruktúrát követve a "RAS Extension Example" (RAS Extension teszt) futtatást.
- Végezze el a "RAS Extension" elemzést az összes mintahely esetében az alábbi "A PyroMark Q24 futtatás elemzése" című részben leírtaknak megfelelően.
- Hasonlítsa össze az eredményeket a referenciajelentésen szereplő eredményekkel. Ha az eredmények megegyeznek, akkor a beépülő modul megfelelően működik.

A PyroMark Q24 futtatás elemzése

A következő lépések egy befejezett RAS Extension futtatás mutációelemzését ismertetik a RAS Extension Pyro beépülő modul használatával.

- Csatlakoztassa a feldolgozott futtatás fájlját tartalmazó USB-adathordozót a számítógép USB-csatlakozójához.
- Másolja át a futtatási fájlt az USB-adathordozóról a számítógép kívánt célmappájába a Windows[®] Explorer használatával.

- A PyroMark Q24 szoftverben AQ módban nyissa meg a futtatási fájlt úgy, hogy a "File" (Fájl) menüben az "Open" (Megnyitás) lehetőséget választja, vagy duplán kattint a fájlra (v) a hivatkozásokat tartalmazó böngészőfelületen.
- 4. A menüben válassza a "Reports", majd az "AQ Add On Reports/RAS Extension" lehetőséget (1. ábra).

Megjegyzés: A KRAS gén 61. kodonjában található mutációk elemzését külön kell elvégezni a KRAS Pyro beépülő modul használatával, a "Reports" menü "AQ Add On Reports/KRAS" (AQ bővítmény jelentései / KRAS) menüpont kiválasztásával (1. ábra).

1. ábra: Befejezett RAS Extension futtatás mutációelemzése a RAS Extension Pyro beépülő modul használatával

5. A szoftver automatikusan elvégzi az 1. táblázatban felsorolt összes mutáció elemzését (a KRAS gén 61. kodonját kivéve) az összes mintahely esetében. A rendszer megjeleníti összefoglaló táblázatban az összes RAS Extension teszt eredményét (2. ábra), és ez alatt találhatók a Pyrogram[®] lenyomatokat és az elemzések minőségére vonatkozó adatokat tartalmazó részletes eredmények.

Megjegyzés: A KRAS gén 61. kodonjában található mutációk elemzését külön kell elvégezni a KRAS Pyro beépülő modul használatával.

Fontos: A RAS Extension Pyro beépülő modul azt a mutációt tünteti fel a jelentésen (1. táblázat), amelynek várható jele a legnagyobb fokú egyezést mutatja a kapott Pyrogram lenyomattal.

Nukleinsavcsere	Aminosavcsere	LOB (% egység)	LOD (% egység)	COSMIC ID* (V69)		
KRAS – 59. kodon (GCA)						
175G>A	A59T	0,5	3,5	546		
176C>G	A59G	0,5	3,5	28518		
KRAS – 117. kodon (AAA)						
351A>C	K117N	1,0	4,0	19940		
351A>T	K117N	3,6	7,1	28519		
KRAS – 146. kodon (GCA)						
436G>A	A146T	2,7	6,6	19404		
436G>C	A146P	1,8	4,8	19905		
437C>T	A146V	2,1	5,1	19900		
NRAS – 12. kodon (GGT)						
34G>A	G12S	1,4	3,4	563		
34G>T	G12C	0,6	2,5	562		
34G>C	G12R	0,4	2,4	561		
35G>A	G12D	1,8	3,8	564		
35G>T	G12V	3,8	8,8	566		
35G>C	G12A	0,5	2,5	565		
NRAS – 13. kodon (GGT)						
37G>A	G13S	1,2	3,2	571		
37G>T	G13C	1,2	3,2 (4)†	570		
37G>C	G13R	0,3	2,3	569		
38G>A	G13D	0,8	2,8	573		
38G>T	G13V	0,0	2 (5)†	574		
38G>C	G13A	0,8	2,8	575		

1. táblázat: Mutációelemzés a RAS Extension Pyro beépülő modul használatával

Nukleinsavcsere	einsavcsere Aminosavcsere		LOD (% egység)	COSMIC ID* (V69)	
NRAS – 59. kodon (GCT)					
175G>A	A59T	3,8	6,9	578	
176C>G	A59G	0,0	3,0	-	
NRAS – 61. kodon (CAA)					
181C>A	Q61K	4,1	6,7	580	
182A>G	Q61R	0,8	2,2	584	
182A>T	Q61L	0,7	2,1	583	
183A>T	Q61H	0,4	1,8	585	
183A>C	Q61H	5,4	8,0	586	
183A>G	Q61Q	2,1	5,8	587	
NRAS – 117. kodon (AAG)					
351G>C	K117N	1,4	4,4	-	
351G>T	K117N	3,0	6,0	-	
NRAS – 146. kodon (GCC)					
436G>A	A146T	1,4	4,4	27174	
436G>C	A146P	3,5	7,2	-	
437C>T	A146V	4,8	7,8	-	

* A Catalogue of Somatic Mutations in Cancer (Szomatikus rákmutációk katalógusa) értékei, amely elérhető a Sanger Institute honlapján: www.sanger.ac.uk/genetics/CGP/cosmic.

[†] A ≥ LOD gyakoriságot eredményező legalacsonyabb mutációérték a mintában.

Well	Assay Name	Sample ID	Result	Frequency [% units]	Nucleotide Substitution	Amino Acid Substitution	Info
A1	KRAS Codon 59	wild-type control	No mutation detected				
A2	KRAS Codon 117	wild-type control	No mutation detected				
A3	KRAS Codon 146	wild-type control	No mutation detected				
A4	NRAS Codon 12 and 13	wild-type control	No mutation detected				
A5	NRAS Codon 59	wild-type control	No mutation detected				
A6	NRAS Codon 61	wild-type control	No mutation detected				
A7	NRAS Codon 117	wild-type control	No mutation detected				
A8	NRAS Codon 146	wild-type control	No mutation detected				
B1	KRAS Codon 59	sample	Mutation	35,0	175G>A	A59T	
B2	KRAS Codon 117	sample	No mutation detected				
B3	KRAS Codon 146	sample	Mutation	29,6	437C>T	A146V	
B4	NRAS Codon 12 and 13	sample	No mutation detected				
B5	NRAS Codon 59	sample	Mutation	20,5	176C>G	A59G	
B6	NRAS Codon 61	sample	No mutation detected				
B7	NRAS Codon 117	sample	Potential low level mutation	5,0	351G>C	K117N	
B8	NRAS Codon 146	sample	No mutation detected				
C1	KRAS Codon 59	NTC	Failed Analysis				<u> </u>
C2	KRAS Codon 117	NTC	Failed Analysis				<u> </u>
C3	KRAS Codon 146	NTC	Failed Analysis				

Summary

2. ábra: Példa a RAS Extension Pyro beépülő modullal végzett elemzés eredmény-összefoglaló táblázatára

Az eredmények értelmezése és az alacsony értéket adó mutációk kimutatása

Erősen ajánljuk, hogy összehasonlítás, illetve a háttérértékek ellenőrzése céljából minden futtatásban szerepeljen egy vad típusú minta is.

Fontos: A "Check" (Ellenőrizendő) vagy "Failed" (Sikertelen) minőségi értékelést a nem várt csúcsmintázat okozhatja. Ez jelezhet egy olyan váratlan mutációt, amely nem szerepel a beépülő modul jelentéséhez végzett elemzésben. Mivel a minták nem várt mutációkat

tartalmazhatnak, elemzésüket manuálisan, a PyroMark Q24 szoftver használatával kell elvégezni. További részleteket a megfelelő NRAS Pyro kit vagy RAS Extension Pyro kit kézikönyvében talál.

Fontos: A Pyrogram lenyomatot mindig össze kell vetni a hisztogrammal, amely a beépülő modul által létrehozott jelentés részletes eredményeket tartalmazó részében található, illetve a PyroMark Q24 szoftverben jobb egérgombbal a Pyrogram ablakba kattintva jeleníthető meg. Ellenőrizni kell, hogy a Pyrogramon láthatók-e nem várt csúcsok. Ha a mért csúcsok nem egyeznek a hisztogramoszlopok magasságával, és ez nem magyarázható ritka vagy váratlan mutációval, akkor az eredmény nem használható a mutációs státusz megítélésére. Javasolt a minta újrafuttatása.

Fontos: Azon minták esetében, amelyekben a jelentés alapján alacsony értéket adó mutáció lehet jelen (a mutációs gyakoriság az LOD és az LOD + 3% egység között van), két párhuzamossal és egy metilálatlan kontroll DNS-t tartalmazó mintával meg kell ismételni a futtatást. Ilyenkor megjelenik egy figyelmeztetés. A minta csak akkor tekinthető pozitívnak az adott mutációra nézve, ha mindkét párhuzamos megerősíti az eredeti elemzésnél kapott eredményt, és láthatóan eltér a normál kontrolltól. Ellenkező esetben a mintát vad típusúnak kell tekinteni.

Fontos: Javasoljuk, hogy azon minták esetében, amelyeknél a jelentés alapján fennáll az alacsony értéket adó mutáció lehetősége, végezzen el egy további manuális elemzést a PyroMark Q24 szoftverrel, pl. а kontrollminta mutációs gyakoriságával való összehasonlítás céljából (a részletes utasításokat a megfelelő RAS Extension Pyro kit kézikönyvében találja: "6. protokoll: A PyroMark Q24 futtatás elemzése"). Ha a kontrollmintánál az LOB feletti gyakoriság tapasztalható, az a szokásosnál magasabb háttérértéket jelez az adott futtatás esetében, amely hatással lehet az allélkvantifikálásra, különösen alacsony értéket adó mutációknál. Ilyen esetben azok a minták, amelyek a jelentés alapján alacsony értéket adó mutációt tartalmazhatnak, nem használhatók fel a mutációs státusz megítéléséhez, és javasolt őket újrafuttatni.

A licenccel kapcsolatos legfrissebb információk és a termékspecifikus jogi nyilatkozatok a megfelelő QIAGEN[®] kit kézikönyvében vagy felhasználói útmutatójában találhatók. A QIAGEN kitek kézikönyvei és felhasználói útmutatój a **www.qiagen.com** webhelyen érhetők el, vagy a QIAGEN Műszaki ügyfélszolgálattól vagy a területileg illetékes forgalmazótól szerezhetők be.

Védjegyek: QIAGEN®, Sample to Insight®, Pyro®, Pyrogram®, PyroMark® (QIAGEN Csoport); Windows® (Microsoft Corporation). 1106191 02/2017 © QIAGEN, minden jog fenntartva. PROM-8093-003

Rendelés: www.qiagen.com/contact | Műszaki támogatás: support.qiagen.com | Webhely: www.qiagen.com