Instrucciones de uso (manual de uso) del QIAstat-Dx® Meningitis/Encephalitis (ME) Panel

Versión 1

Para uso diagnóstico in vitro

691611

QIAGEN GmbH, QIAGEN Strasse 1, 40724 Hilden, ALEMANIA

1126985ES

Contenido

Uso previsto	4
Resumen y explicación	6
Descripción del QIAstat-Dx ME Panel Cartridge	6
Información sobre el patógeno	8
Principio del procedimiento	10
Descripción del proceso	10
Recolección de muestras y carga del cartucho	11
Preparación de las muestras y amplificación y detección de ácidos nucleio	os 12
Materiales suministrados.	13
Contenido del kit	13
Materiales necesarios pero no suministrados	14
Advertencias y precauciones	15
Información de seguridad	15
Precauciones de laboratorio	1 <i>7</i>
Almacenamiento y manipulación de reactivos	18
Manipulación, almacenamiento y preparación de muestras	18
Procedimiento	19
Control interno	19
Protocolo: muestras de líquido cefalorraquídeo	19
Interpretación de los resultados	30
Visualización de los resultados	30

Visualización de las curvas de amplificación	32
Interpretación de los resultados	43
Interpretación del control interno	43
Control de calidad	44
Limitaciones	44
Características del rendimiento	47
Rendimiento clínico	47
Rendimiento analítico	51
Apéndice A: Instalación del archivo de definición de ensayos	76
Apéndice B: Glosario	79
Apéndice C: Exclusión de garantías	80
Referencias	81
Símbolos	82
Historial de revisiones de las instrucciones de uso (manual de uso)	84

Uso previsto

El QIAstat-Dx Meningitis/Encephalitis (ME) Panel ("QIAstat-Dx ME Panel") es una prueba de diagnóstico *in vitro* basada en ácido nucleico, múltiple y cualitativa destinada a utilizarse con el QIAstat-Dx System. El QIAstat-Dx ME Panel es capaz de detectar e identificar al mismo tiempo varios ácidos nucleicos, bacterianos y víricos y ácidos ribonucleicos de muestras de líquido cefalorraquídeo (LCR) obtenidas mediante punción lumbar de personas con signos y/o síntomas de meningitis y/o encefalitis.

El QlAstat-Dx ME Panel permite identificar y diferenciar los siguientes microrganismos: Escherichia coli K1, Haemophilus influenzae, Listeria monocytogenes, Neisseria meningitidis (encapsulado), Streptococcus agalactiae, Streptococcus pneumoniae, Mycoplasma pneumoniae, Streptococcus pyogenes, virus del herpes simple tipo 1, virus del herpes simple tipo 2, virus del herpes simple tipo 6, enterovirus, parechovirus humano, virus de la varicelazóster y Cryptococcus neoformans/gattii*.

El QIAstat-Dx ME Panel está indicado como ayuda en el diagnóstico de agentes específicos de la meningitis y/o la encefalitis y los resultados deben utilizarse junto con otros datos clínicos, epidemiológicos y de laboratorio. Los resultados del QIAstat-Dx ME Panel no están pensados para utilizarse como el único fundamento en el que sustentar el diagnóstico, el tratamiento u otras decisiones de atención médica al paciente. La obtención de unos resultados positivos no descarta la infección conjunta por otros microrganismos no incluidos en el QIAstat-Dx ME Panel. El o los microrganismos detectados pueden no ser la causa definitiva de la enfermedad. Los resultados negativos no descartan la infección del sistema nervioso central (SNC).

* Cryptococcus neoformans y Cryptococcus gattii no se diferencian.

Esta prueba no detecta todos los agentes relacionados con una infección del SNC y la sensibilidad en algunos ámbitos clínicos puede diferir de la descrita en el prospecto del envase.

El QIAstat-Dx ME Panel no está previsto para el análisis de muestras obtenidas de productos sanitarios internos del SNC.

El QIAstat-Dx ME Panel se ha diseñado para utilizarse junto con procedimientos diagnósticos habituales (p. ej., cultivos para realizar la recuperación de microrganismos, la determinación del serotipo y la prueba de la susceptibilidad a los antibióticos).

El QIAstat-Dx ME Panel se ha diseñado exclusivamente para su uso diagnóstico *in vitro* por parte de los profesionales del laboratorio.

Resumen y explicación

Descripción del QIAstat-Dx ME Panel Cartridge

El QIAstat-Dx ME Panel Cartridge es un dispositivo plástico desechable que permite realizar ensayos moleculares totalmente automatizados para detectar e identificar ácidos nucleicos de varios agentes, directamente de las muestras de LCR. Las principales características del QIAstat-Dx ME Panel Cartridge incluyen la compatibilidad con un tipo de muestra líquida, la contención hermética de los reactivos precargados necesarios para la prueba y un verdadero funcionamiento sin necesidad de supervisión. Todos los pasos de preparación de muestras y de realización del ensayo se realizan dentro del cartucho.

Todos los reactivos necesarios para la realización completa de una ejecución de prueba están precargados y funcionan de forma autónoma dentro del QIAstat-Dx ME Panel Cartridge. No es necesario que el usuario toque ni manipule ninguno de los reactivos. Durante la prueba, los reactivos se manipulan dentro del cartucho en el módulo analítico del QIAstat-Dx Analyzer 1.0 mediante un sistema de microfluidos que funciona de forma neumática y no entra en contacto directo con los actuadores del analizador. El QIAstat-Dx Analyzer 1.0 cuenta con filtros de aire tanto para la entrada como para la salida de aire, lo que proporciona una protección adicional para el entorno. Después de la prueba, el cartucho se mantiene cerrado herméticamente en todo momento, lo que aumenta en gran medida su eliminación segura.

Dentro del cartucho, se llevan a cabo automáticamente varios pasos secuenciales mediante presión neumática para transferir las muestras y los fluidos a través de la cámara de transferencia hasta los destinos previstos.

Después de introducir el QIAstat-Dx ME Panel Cartridge que contiene la muestra en el QIAstat-Dx Analyzer 1.0, los siguientes pasos del ensayo se realizan de forma automática:

- Resuspensión del control interno
- Lisis celular mediante medios mecánicos o químicos
- Purificación de ácidos nucleicos basada en membranas
- Mezcla del ácido nucleico purificado con mezcla maestra de reactivos liofilizados

- Transferencia de alícuotas definidas de eluido o mezcla maestra a diferentes cámaras de reacción
- Realización del análisis de real-time RT-PCR múltiple dentro de cada cámara de reacción.

Nota: El aumento en la fluorescencia, que indica la detección del analito diana, se detecta directamente dentro de cada cámara de reacción.

Figura 1. Diseño del QIAstat-Dx ME Panel Cartridge y sus características.

Nota: El puerto para hisopo no se utiliza para el ensayo del QIAstat-Dx ME Panel.

Información sobre el patógeno

La meningitis y la encefalitis son enfermedades potencialmente devastadoras y pueden estar relacionadas con tasas significativas de morbilidad y mortalidad.(1) La meningitis se define como la inflamación de las meninges, la encefalitis se define como la inflamación del parénquima cerebral y la meningoencefalitis, como la inflamación de ambas zonas. Todas estas enfermedades pueden deberse a bacterias, virus u hongos, aunque es más frecuente que la encefalitis esté relacionada con un origen vírico.(2) Las presentaciones clínicas generalmente son inespecíficas; ya que los pacientes a menudo experimentan cefalea, alteraciones del estado mental y, en el caso de la meningitis, rigidez de nuca. Cada diagnóstico es fundamental, ya que los síntomas pueden aparecer de repente e intensificarse hasta provocar daño cerebral, pérdida auditiva o del habla, ceguera, o incluso, la muerte. Dado que el tratamiento varía según la causa de la enfermedad, es necesario identificar un agente patógeno específico para ajustar el tratamiento en consecuencia.

El QlAstat-Dx ME Panel Cartridge permite detectar 15 patógenos bacterianos, víricos y fúngicos diana que causan signos y/o síntomas de meningitis y/o encefalitis. La prueba requiere un volumen de muestra pequeño y un tiempo de manipulación mínimo; los resultados estarán disponibles en menos de 80 minutos.

Los patógenos que se pueden detectar e identificar con el QIAstat-Dx ME Panel se detallan en la Tabla 1.

Tabla 1. Patógenos detectados con el QIAstat-Dx ME Panel

Microrganismo patógeno	Clasificación (tipo de genoma)
Escherichia coli K1	Bacteria (ADN)
Haemophilus influenzae	Bacteria (ADN)
Listeria monocytogenes	Bacteria (ADN)
Neisseria meningitidis (encapsulado)	Bacteria (ADN)
Streptococcus agalactiae	Bacteria (ADN)
Streptococcus pneumoniae	Bacteria (ADN)
Streptococcus pyogenes	Bacteria (ADN)
Mycoplasma pneumoniae	Bacteria (ADN)
Virus del herpes simple 1	Virus del herpes (ADN)
Virus del herpes simple 2	Virus del herpes (ADN)
Virus del herpes humano tipo 6	Virus del herpes (ADN)
Enterovirus	Picornavirus (ARN)
Parechovirus humano	Picornavirus (ARN)
Virus de la varicela-zóster	Virus del herpes (ADN)
Cryptococcus gattii/Cryptococcus neoformans	Levadura (ADN)

Principio del procedimiento

Descripción del proceso

Las pruebas de diagnóstico con el QIAstat-Dx ME Panel se realizan en el QIAstat-Dx Analyzer 1.0. El QIAstat-Dx Analyzer 1.0 realiza automáticamente todos los pasos de preparación y análisis de las muestras. Las muestras se recogen y se cargan de forma manual en el QIAstat-Dx ME Panel Cartridge.

Se utiliza una pipeta de transferencia para transferir la muestra al puerto principal (figura 2).

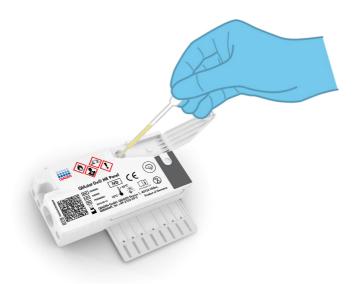


Figura 2. Dispensación de la muestra en el puerto principal.

Recolección de muestras y carga del cartucho

Las tareas de recolección de las muestras y su posterior carga en el QIAstat-Dx ME Panel Cartridge debe realizarlas personal formado en la manipulación segura de muestras biológicas.

Los pasos que debe llevar a cabo el usuario son los siguientes:

- 1. Se recoge una muestra de líquido cefalorraquídeo (LCR).
- 2. Se escriben a mano los datos de la muestra o se adhiere una etiqueta de la muestra en la parte superior del QIAstat-Dx ME Panel Cartridge.
- 3. La muestra de LCR se carga de forma manual en el QIAstat-Dx ME Panel Cartridge.

 Se transfieren 200 µl de la muestra al puerto principal del QIAstat-Dx ME Panel Cartridge con una de las pipetas de transferencia incluidas. Use pipetas estériles y graduadas alternativas en caso de que se hayan usado las seis pipetas incluidas en el kit.

Nota: Al cargar una muestra de LCR, el usuario realiza una comprobación visual a través de la ventana de inspección de muestras (consulte la imagen siguiente) para confirmar que la muestra líquida se ha cargado (figura 3).

Figura 3. Ventana de inspección de muestras (flecha azul).

- 4. El código de barras de la muestra y el código QR del QIAstat-Dx ME Panel Cartridge se escanean en el QIAstat-Dx Analyzer 1.0.
- 5. El QIAstat-Dx ME Panel Cartridge se introduce en el QIAstat-Dx Analyzer 1.0.
- 6. Se inicia la prueba en el QIAstat-Dx Analyzer 1.0.

Preparación de las muestras y amplificación y detección de ácidos nucleicos

El QlAstat-Dx Analyzer 1.0 realiza automáticamente la extracción, la amplificación y la detección de los ácidos nucleicos de la muestra.

- La muestra se homogeniza y las células se lisan en la cámara de lisis del QIAstat-Dx ME Panel Cartridge, que incluye un rotor que gira a gran velocidad.
- Los ácidos nucleicos se purifican a partir de la muestra lisada uniéndose a una membrana de sílice en la cámara de purificación del QIAstat-Dx ME Panel Cartridge en presencia de sales caótropas y alcohol.
- Los ácidos nucleicos purificados se eluyen desde la membrana de la cámara de purificación y se mezclan con los productos químicos liofilizados de la PCR en la cámara química en seco del QIAstat-Dx ME Panel Cartridge.
- 4. La mezcla de la muestra y los reactivos de la PCR se dispensa en las cámaras de PCR del QIAstat-Dx ME Panel Cartridge que contienen los cebadores y las sondas liofilizados específicos del ensayo.
- 5. El QlAstat-Dx Analyzer 1.0 genera los perfiles de temperatura óptimos para llevar a cabo una real-time RT-PCR múltiple eficaz y realiza las mediciones de fluorescencia en tiempo real para generar las curvas de amplificación.
- 6. El software del QIAstat-Dx Analyzer 1.0 interpreta los datos obtenidos y los controles del proceso y genera un informe de la prueba.

Materiales suministrados

Contenido del kit

QIAstat-Dx ME Panel N.º de catálogo Número de pruebas	691611 6
QIAstat-Dx ME Panel Cartridge*	6
Transfer pipettes (Pipetas de transferencia)†	6

^{*} Seis (6) cartuchos empaquetados por separado que contienen todos los reactivos necesarios para la preparación de muestras y la real-time RT-PCR múltiple más control interno.

[†] Seis (6) pipetas de transferencia empaquetadas por separado para dispensar la muestra líquida en el QIAstat-Dx ME Panel Cartridge.

Materiales necesarios pero no suministrados

El QIAstat-Dx ME Panel está diseñado para su uso con el QIAstat-Dx Analyzer 1.0. Antes de comenzar una prueba, asegúrese de contar con lo siguiente:

- QlAstat-Dx Analyzer 1.0 (al menos un módulo operativo y un módulo analítico) con la versión 1.4 o superior del software
- Manual del usuario del QlAstat-Dx Analyzer 1.0; (para uso con la versión 1.4 o superior del software)
- Software del archivo de definición de ensayos del QIAstat-Dx más reciente para el QIAstat-Dx ME Panel instalado en el módulo operativo.

Advertencias y precauciones

Para uso diagnóstico in vitro.

El QIAstat-Dx ME Panel está diseñado para que lo utilicen profesionales de laboratorio que hayan recibido formación en el uso del QIAstat-Dx Analyzer 1.0.

Información de seguridad

Siempre que trabaje con productos químicos, utilice una bata de laboratorio, guantes desechables y gafas de protección adecuados. Protéjase la piel, los ojos y las membranas mucosas y cámbiese los guantes con frecuencia cuando manipule muestras. Si desea obtener más información, consulte las hojas de datos sobre seguridad (Safety Data Sheets, SDS) correspondientes. Dichas fichas están disponibles en línea en formato PDF en www.qiagen.com/safety, donde podrá encontrar, ver e imprimir la ficha de datos de seguridad de cada kit de QIAGEN y de cada componente del kit.

Manipule todas las muestras, los cartuchos usados y las pipetas de transferencia como si fueran capaces de transmitir agentes infecciosos. Respete siempre las precauciones de seguridad que se describen en las directrices pertinentes, como *Protection of Laboratory Workers from Occupationally Acquired Infections, Approved Guidelines* M29 del Clinical and Laboratory Standards Institute® (CLSI) y otros documentos pertinentes.

Respete los procedimientos de seguridad de su centro para manipular muestras biológicas. Deseche las muestras, los QIAstat-Dx ME Panel Cartridges y las pipetas de transferencia de acuerdo con las normativas correspondientes.

El QIAstat-Dx ME Panel Cartridge es un dispositivo cerrado de un solo uso que contiene todos los reactivos necesarios para la preparación de las muestras y la real-time RT-PCR múltiple dentro del QIAstat-Dx Analyzer 1.0. No utilice un QIAstat-Dx ME Panel Cartridge si parece estar dañado o presenta fugas de líquido. Deseche los cartuchos usados o dañados de acuerdo con todas las normativas y leyes en materia de salud y de seguridad nacionales, estatales y locales.

Respete los procedimientos estándares de laboratorio para mantener el área de trabajo limpia y sin contaminación. Las directrices se describen en publicaciones como *Biosafety in Microbiological and Biomedical Laboratories* de los Centers for Disease Control and Prevention y los National Institutes of Health (www.cdc.gov/od/ohs/biosfty/biosfty.htm).

Las siguientes frases relativas a los riesgos y a las medidas de precaución se aplican a los componentes del QIAstat-Dx ME Panel.

Contiene: etanol, clorhidrato de guanidina, tiocianato de guanidina, isopropanol, proteinasa K y t-octilfenoxipolietoxietanol. ¡Peligro! Líquido y vapor fácilmente inflamables. Nocivo en caso de ingestión o inhalación. Puede ser nocivo en contacto con la piel. Provoca quemaduras graves en la piel y lesiones oculares. Puede provocar síntomas de alergia o asma o dificultades respiratorias en caso de inhalación. Puede provocar somnolencia y vértigo. Nocivo para los organismos acuáticos, con efectos a largo plazo. En contacto con ácidos libera gases muy tóxicos. Corrosivo para las vías respiratorias. Conservar alejado del calor, chispas, llamas abiertas y superficies calientes. No fumar. Evitar respirar el polvo/el humo/el gas/la niebla/los vapores/el gerosol. Usar **quantes** protectores/indumentaria protectora y protección para los ojos/la cara. Llevar equipo de protección respiratoria. EN CASO DE CONTACTO CON LOS OJOS: Aclarar cuidadosamente con agua durante varios minutos. Quitar las lentes de contacto, si lleva y resulta fácil. Seguir aclarando. EN CASO DE exposición manifiesta o presunta: Llame inmediatamente a un CENTRO DE TOXICOLOGÍA o a un médico. Transporte a la persona al exterior y manténgala en reposo en una posición cómoda para respirar.

Precauciones de laboratorio

Para evitar la posible contaminación de las muestras y del área de trabajo, se deben seguir procedimientos de seguridad y limpieza del laboratorio estándar y deben tomarse las siguientes precauciones:

- Las muestras deben procesarse en una cabina de seguridad biológica o superficie limpia similar que garantice la protección del usuario. Si no se utiliza una cabina de seguridad biológica, se debe usar una caja de aire muerto (p. ej., AirClean PCR workstation), una protección contra salpicaduras (p. ej., Bel-Art Scienceware Splash Shields) o un protector facial al preparar las muestras.
- La cabina de seguridad biológica que se utilice para realizar los análisis de patógenos de LCR (p. ej., cultivo) no debe utilizarse para preparar muestras o cargar cartuchos.
- Antes de procesar las muestras, limpie a fondo el área de trabajo con un limpiador adecuado como lejía al 10 % recién preparada o un desinfectante similar. Para evitar la acumulación de residuos y el posible daño de la muestra o la interferencia de los desinfectantes, limpie las superficies desinfectadas con agua.
- Las muestras y los cartuchos se deben manipular uno a la vez.
- Use guantes limpios para retirar los materiales de las bolsas de envasado a granel y vuelva a cerrarlas cuando no las use.
- Cámbiese los guantes y limpie el área de trabajo entre una muestra y otra.
- Deseche los cartuchos usados de inmediato en un recipiente para materiales de peligro biológico adecuado una vez que haya finalizado el análisis.
- Evite la manipulación excesiva de los cartuchos tras las series analíticas.
- Evite dañar el cartucho.
- Use guantes limpios para retirar los materiales de las cajas de envasado a granel y ciérrelas cuando no las use.

Almacenamiento y manipulación de reactivos

Guarde los QIAstat-Dx ME Panel Cartridges en un lugar de almacenamiento limpio y seco a temperatura ambiente (15-25 °C). No retire los QIAstat-Dx ME Panel Cartridges ni las pipetas de transferencia de sus envases individuales hasta que vaya a utilizarlos. En estas condiciones, los QIAstat-Dx ME Panel Cartridges se pueden guardar hasta la fecha de caducidad impresa en el envase individual. La fecha de caducidad también se indica en el código de barras del QIAstat-Dx ME Panel Cartridge y el QIAstat-Dx Analyzer 1.0 la lee cuando se introduce un cartucho en el instrumento para comenzar una prueba.

Manipulación, almacenamiento y preparación de muestras

Las muestras de LCR deben obtenerse y manipularse de acuerdo con los procedimientos recomendados.

Las condiciones de conservación recomendadas para el LCR son a temperatura ambiente (15-25 °C) durante un máximo de 12 horas.

Procedimiento

Control interno

El QIAstat-Dx ME Panel Cartridge incluye un control interno de proceso completo, cuyo título es *Schizosaccharomyces pombe*, una levadura (hongo) que se incluye en el cartucho en su forma seca y se rehidrata al cargar la muestra. Este material de control interno comprueba todos los pasos del proceso de análisis, incluida la homogeneización de la muestra, lisis de estructuras celulares y víricas (mediante disrupción química y mecánica), purificación de ácidos nucleicos, transcripción inversa y real-time PCR.

Una señal positiva en el control interno indica que todos los pasos del procesamiento que ha realizado el QIAstat-Dx ME Panel Cartridge se han completado correctamente.

Una señal negativa del control interno no descarta ningún resultado positivo de las dianas detectadas e identificadas, pero sí invalida todos los resultados negativos del análisis. Por lo tanto, la prueba se debe repetir si la señal del control interno es negativa.

Protocolo: muestras de líquido cefalorraquídeo

Recolección, transporte y almacenamiento de las muestras

La muestra de LCR debe obtenerse a través de una punción lumbar y no debe centrifugarse.

Carga de una muestra en el QIAstat-Dx ME Panel Cartridge

- 1. Limpie a fondo el área de trabajo con lejía al 10 % recién preparada (o un desinfectante adecuado) y luego, enjuague con agua.
- 2. Abra el envase de un QIAstat-Dx ME Panel Cartridge tirando de las muescas para abrir situadas en los costados del embalaje (figura 4).

IMPORTANTE: Una vez abierto el envase, la muestra se debe cargar dentro del QIAstat-Dx ME Panel Cartridge y cargarse en el QIAstat-Dx Analyzer 1.0 en un plazo de 120 minutos.

Figura 4. Apertura del QIAstat-Dx ME Panel Cartridge.

- 3. Retire el QIAstat-Dx ME Panel Cartridge del envase y colóquelo con el código de barras de la etiqueta mirando hacia usted.
- 4. Escriba a mano los datos de la muestra, o coloque una etiqueta con los datos de la muestra, en la parte superior del QIAstat-Dx ME Panel Cartridge. Asegúrese de que la etiqueta esté bien colocada y que no impida abrir la tapa (figura 5).

Figura 5. Colocación de los datos de la muestra en la parte superior del QIAstat-Dx Meningitis/Encephalitis Panel Cartridge.

5. Abra la tapa de la muestra del puerto principal en la parte frontal del QIAstat-Dx ME Panel Cartridge (figura 6).

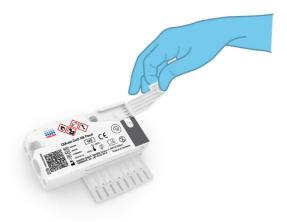


Figura 6. Apertura de la tapa de la muestra del puerto principal.

6. Abra el tubo con la muestra que se va a procesar. Utilice la pipeta de transferencia suministrada para extraer líquido hasta la segunda línea de llenado de la pipeta (es decir, 200 μl; figura 7). IMPORTANTE: No deje que entre aire en la pipeta. Si sucede, expulse con cuidado el líquido de la muestra que está en la pipeta de nuevo en el tubo de muestras y vuelva a extraer líquido.

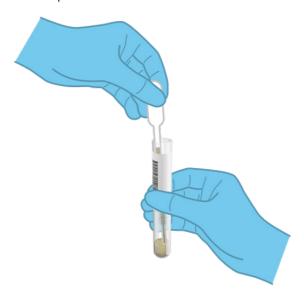


Figura 7. Extracción de la muestra a la pipeta de transferencia suministrada.

7. Transfiera con cuidado 200 µl de la muestra en el puerto principal del QIAstat-Dx ME Panel Cartridge mediante la pipeta de transferencia suministrada de un solo uso (figura 8).

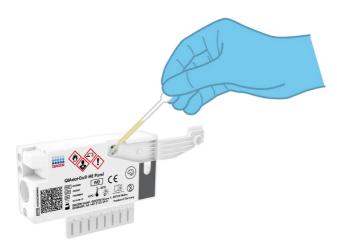


Figura 8. Transferencia de la muestra en el puerto principal del QIAstat-Dx ME Panel Cartridge.

8. Cierre bien la tapa del puerto principal hasta que haga clic (figura 9).

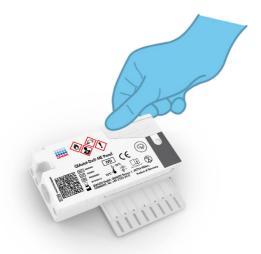


Figura 9. Cierre de la tapa del puerto principal.

9. Revise la ventana de inspección de muestras del QIAstat-Dx ME Panel Cartridge para confirmar visualmente que la muestra se ha cargado (figura 10).

IMPORTANTE: Una vez colocada la muestra dentro del QIAstat-Dx ME Panel Cartridge, el cartucho debe cargarse en el QIAstat-Dx Analyzer 1.0 en un plazo de 90 minutos.

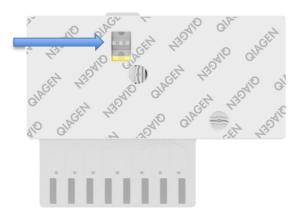


Figura 10. Ventana de inspección de muestras (flecha azul).

Inicio del QIAstat-Dx Analyzer 1.0

 Encienda el QIAstat-Dx Analyzer 1.0 con el botón On/Off (Encendido/apagado) situado en la parte delantera del instrumento.

Nota: El interruptor de alimentación situado en la parte posterior del módulo analítico debe estar en la posición "I". Los indicadores de estado del QIAstat-Dx Analyzer 1.0 se iluminarán en azul.

- 2. Espere hasta que aparezca la pantalla Main (Principal) y los indicadores de estado del QIAstat-Dx Analyzer 1.0 se iluminen en verde y dejen de parpadear.
- 3. Inicie sesión en el QIAstat-Dx Analyzer 1.0 con su nombre de usuario y contraseña.

Nota: Si la función User Access Control (Control de acceso de usuarios) está activada, aparecerá la pantalla Login (Iniciar sesión). Si la función User Access Control (Control de acceso de usuarios) está desactivada, no será necesario introducir el nombre de usuario ni la contraseña y aparecerá la pantalla Main (Principal).

4. Si el software del archivo de definición de ensayos no se ha instalado en el QIAstat-Dx Analyzer 1.0, siga las instrucciones de instalación antes de realizar la prueba (para obtener información adicional, consulte el Apéndice A: Instalación del archivo de definición de ensayos en la página 76).

Realización de una prueba

- Pulse el botón Run Test (Realizar prueba) situado en la esquina superior derecha de la pantalla táctil del QIAstat-Dx Analyzer 1.0.
- 2. Cuando se le indique, escanee el código de barras del identificador de muestra del tubo de LCR que contiene la muestra, o escanee el código de barras de los datos de la muestra situado en la parte superior del QIAstat-Dx ME Panel Cartridge (consulte el paso 3); para ello, utilice el lector de códigos de barras delantero que está integrado en el QIAstat-Dx Analyzer 1.0 (Figura 11).

Nota: También puede introducir el identificador de la muestra con el teclado virtual de la pantalla táctil; para ello, debe seleccionar el campo Sample ID (Identificador de muestra).

Nota: En función de la configuración del sistema elegida, también puede ser necesario introducir el identificador del paciente en este punto.

Nota: Las instrucciones del QIAstat-Dx Analyzer 1.0 aparecen en la barra de instrucciones situada en la parte inferior de la pantalla táctil.

Figura 11. Escaneo del código de barras del identificador de la muestra.

3. Cuando se le indique, escanee el código de barras del QIAstat-Dx ME Panel Cartridge que se debe utilizar (figura 12). El QIAstat-Dx Analyzer 1.0 reconoce automáticamente el ensayo que se debe realizar en función del código de barras del cartucho.

Nota: El QlAstat-Dx Analyzer 1.0 no aceptará QlAstat-Dx ME Panel Cartridges con una fecha de caducidad vencida, cartuchos utilizados anteriormente ni cartuchos para ensayos que no se hayan instalado en la unidad. En estos casos, aparecerá un mensaje de error y el QlAstat-Dx ME Panel Cartridge se rechazará. Para obtener información adicional sobre la instalación de ensayos, consulte el manual del usuario del QlAstat-Dx Analyzer 1.0.

Figura 12. Escaneo del código de barras del QIAstat-Dx Meningitis/Encephalitis Panel Cartridge.

- 4. Aparecerá la pantalla Confirm (Confirmar). Revise los datos introducidos y realice los cambios necesarios; para ello, seleccione los campos correspondientes en la pantalla táctil y modifique la información.
- Pulse Confirm (Confirmar) cuando todos los datos que se muestren sean correctos. Si es necesario, seleccione el campo que corresponda para modificar su contenido o pulse Cancel (Cancelar) para cancelar la prueba (figura 13).

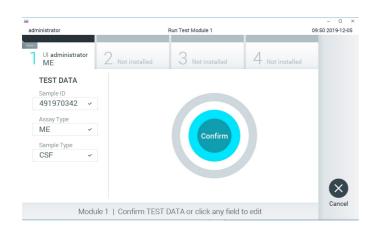


Figura 13. Confirmación de introducción de datos.

6. Asegúrese de que ambas tapas de la muestra del puerto para hisopo y el puerto principal del QIAstat-Dx ME Panel Cartridge estén bien cerradas. Cuando el puerto de entrada del cartucho, ubicado en la parte superior del QIAstat-Dx Analyzer 1.0 se abra automáticamente, introduzca el QIAstat-Dx ME Panel Cartridge con el código de barras mirando hacia la izquierda y las cámaras de reacción mirando hacia abajo (figura 14).

Nota: No es necesario empujar el QlAstat-Dx ME Panel Cartridge en el QlAstat-Dx Analyzer 1.0. Colóquelo correctamente en el puerto de entrada del cartucho y el QlAstat-Dx Analyzer 1.0 lo desplazará automáticamente hacia el interior del módulo analítico.

Nota: El puerto para hisopo no se utiliza para el ensayo del QIAstat-Dx ME Panel.

Figura 14. Introducción del QIAstat-Dx ME Panel Cartridge en el QIAstat-Dx Analyzer 1.0.

7. Una vez que detecte el QIAstat-Dx ME Panel Cartridge, el QIAstat-Dx Analyzer 1.0 cerrará automáticamente la tapa del puerto de entrada del cartucho y comenzará la realización de la prueba. El operador no tendrá que realizar ninguna otra acción para que comience la prueba.

Nota: El QlAstat-Dx Analyzer 1.0 no aceptará un QlAstat-Dx ME Panel Cartridge que no sea el que se ha utilizado y escaneado durante la configuración de la prueba. Si se introduce un cartucho distinto del que se ha escaneado, se generará un error y el cartucho se expulsará automáticamente.

Nota: Hasta este momento, es posible cancelar la ejecución de la prueba; para ello, se debe seleccionar el botón Cancel (Cancelar) en la esquina inferior derecha de la pantalla táctil.

Nota: En función de la configuración del sistema, es posible que se solicite al operador que vuelva a introducir su contraseña de usuario para comenzar la realización de la prueba.

Nota: La tapa del puerto de entrada del cartucho se cerrará automáticamente después de 30 segundos si no se coloca un QIAstat-Dx ME Panel Cartridge en el puerto. Si esto sucede, repita el procedimiento comenzando con el paso 18.

8. Mientras se está realizando la prueba, el tiempo restante de la serie se muestra en la pantalla táctil.

- 9. Una vez finalizada la prueba, aparecerá la pantalla Eject (Expulsar) (figura 15) y la barra de Estado del módulo mostrará el resultado de la prueba como una de las siguientes opciones:
 - O **TEST COMPLETED** (Prueba finalizada): La prueba ha finalizado satisfactoriamente.
 - O **TEST FAILED** (Error en la prueba): Se ha producido un error durante la prueba.
 - TEST CANCELED (Prueba cancelada): El usuario ha cancelado la prueba.

IMPORTANTE: Si la prueba falla, póngase en contacto con el servicio técnico.

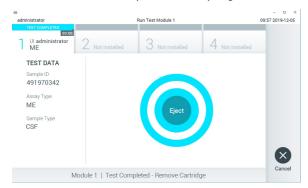


Figura 15. Visualización de la pantalla Eject (Expulsar).

- 10. Pulse Eject (Expulsar) en la pantalla táctil para retirar el QlAstat-Dx ME Panel Cartridge y desecharlo como residuo biopeligroso de acuerdo con todas las normativas y leyes en materia de salud y de seguridad nacionales, estatales y locales. El QlAstat-Dx ME Panel Cartridge se debe extraer cuando se abra el puerto de entrada del cartucho y este se expulse. Si el cartucho no se retira después de 30 segundos, se volverá a introducir automáticamente en el QlAstat-Dx Analyzer 1.0 y se cerrará la tapa del puerto de entrada del cartucho. Si esto sucede, pulse Eject (Expulsar) para volver a abrir la tapa del puerto de entrada del cartucho y, a continuación, retire el cartucho.
 - IMPORTANTE: Los QIAstat-Dx ME Panel Cartridges utilizados se deben desechar. No es posible reutilizar cartuchos para pruebas que se han iniciado, pero que posteriormente haya cancelado el operador o para pruebas en las que se ha detectado un error.
- 11. Una vez que se ha expulsado el QIAstat-Dx ME Panel Cartridge, aparecerá la pantalla de resultados Summary (Resumen). Para comenzar el proceso de realización de otra prueba, pulse Run Test (Realizar prueba).

Nota: Para obtener más información sobre el uso del QlAstat-Dx Analyzer 1.0, consulte el manual del usuario del QlAstat-Dx Analyzer 1.0.

Interpretación de los resultados

NOTA: Las imágenes de la pantalla del QlAstat-Dx Analyzer 1.0 de esta sección se proporcionan solo a modo de ejemplo y posiblemente no representen resultados de patógenos específicos suministrados para el QlAstat-Dx ME Panel.

Visualización de los resultados

El QIAstat-Dx Analyzer 1.0 interpreta y guarda automáticamente los resultados de la prueba. Después de expulsar el QIAstat-Dx ME Panel Cartridge, aparece de forma automática la pantalla de resultados Summary (Resumen) (figura 16).

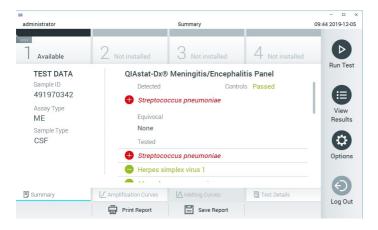


Figura 16. Ejemplo de pantalla de resultados Summary (Resumen) que muestra Test Data (Datos de la prueba) en el panel izquierdo y Summary (Resumen) de la prueba en el panel principal.

La parte principal de la pantalla muestra las listas siguientes y utiliza símbolos y códigos con colores para indicar los resultados:

- La primera lista, en el encabezado Detected (Detectados), incluye todos los microrganismos patógenos detectados e identificados en la muestra, los cuales van precedidos de un signo + y aparecen en color rojo.
- La segunda lista, en el encabezado Equivocal (Equívocos), no se utiliza. Los resultados
 Equivocal (Equívocos) no se aplican al QIAstat-Dx ME Panel; por lo tanto, la lista Equivocal
 (Equívocos) siempre estará vacía.
- La tercera lista, en el encabezado Tested (Analizados), incluye todos los microrganismos patógenos analizados en la muestra. Los microrganismos patógenos detectados e identificados en la muestra van precedidos de un signo y aparecen en color rojo. Los patógenos analizados, pero que no se han detectado, van precedidos de un signo y aparecen en color verde. Los patógenos no válidos también se muestran en esta lista.

Nota: Los microrganismos patógenos detectados e identificados en la muestra aparecen en ambas listas, **Detected** (Detectados) y **Tested** (Analizados).

Si no se ha podido completar la prueba satisfactoriamente, aparecerá el mensaje **Failed** (Con error), seguido del código de error específico.

Los siguientes Test Data (Datos de la prueba) aparecen en el lado izquierdo de la pantalla:

- Sample ID (ID de Muestra)
- Patient ID (Identificador de paciente) (si está disponible)
- Assay Type (Tipo de ensayo)
- Sample Type (Tipo de muestra)

En función de los derechos de acceso del operador, existen otros datos sobre el ensayo disponibles a través de las pestañas que aparecen en la parte inferior de la pantalla (p. ej., aráficos de amplificación y detalles de la prueba).

Se puede exportar un informe con los datos del ensayo a un dispositivo de almacenamiento externo USB. Introduzca el dispositivo de almacenamiento USB en uno de los puertos USB del QIAstat-Dx Analyzer 1.0 y pulse Save Report (Guardar informe) en la barra inferior de la pantalla. Este informe se puede exportar en cualquier momento posterior; para ello, deberá seleccionar la prueba de la lista View Results (Ver resultados).

También, puede imprimir el informe con tan solo pulsar Print Report (Imprimir informe) en la barra inferior de la pantalla.

Visualización de las curvas de amplificación

Para ver las curvas de amplificación de la prueba de los patógenos detectados, pulse la pestaña 🗹 Amplification Curves (Curvas de amplificación) (figura 17).

Figura 17. Pantalla Amplification Curves (Curvas de amplificación), (pestaña PATHOGENS [Patógenos]).

Los datos sobre los patógenos analizados y los controles se muestran a la izquierda; las curvas de amplificación se muestran en el centro.

Nota: Si la función User Access Control (Control de acceso de usuarios) está activada en el QIAstat-Dx Analyzer 1.0, la pantalla Amplification Curves (Curvas de amplificación) solo estará disponible para los operadores que cuenten con derechos de acceso.

Pulse la pestaña PATHOGENS (Microrganismos patógenos), situada en el lado izquierdo, para mostrar los gráficos correspondientes a los microrganismos patógenos analizados. Pulse sobre el nombre del patógeno para seleccionar los patógenos que desea que se muestren en el gráfico de amplificación. Puede seleccionar un solo patógeno, varios o ninguno. A cada patógeno que figure en la lista seleccionada, se le asignará un color correspondiente a la curva de amplificación asociada con dicho patógeno. Los patógenos no seleccionados aparecerán en color gris.

Los valores correspondientes de C_T y fluorescencia de punto final (Endpoint Fluorescence, EP) aparecen debajo del nombre de cada patógeno.

Pulse la pestaña CONTROLS (Controles), situada a la izquierda, para ver los controles en el gráfico de amplificación. Pulse el círculo que está junto al nombre del control para seleccionarlo o anular su selección (figura 18).

Figura 18. Pantalla Amplification Curves (Curvas de amplificación), (pestaña CONTROLS [Controles]).

El gráfico de amplificación muestra la curva de datos de los patógenos o controles seleccionados. Para alternar entre escalas logarítmicas o lineales en el eje de ordenadas, pulse el botón Lin (Lineal) o Log (Logarítmica) en la esquina inferior izquierda del gráfico.

La escala del eje de abscisas y del eje de ordenadas se puede ajustar con los selectores de color azul que hay en cada eje. Mantenga pulsado un selector azul y, a continuación, muévalo hasta la ubicación deseada en el eje. Mueva un selector azul hasta el origen del eje para regresar a los valores predeterminados.

Visualización de los detalles de la prueba

Pulse Test Details (Detalles de la prueba) en la barra del menú de pestañas en la parte inferior de la pantalla táctil para revisar los resultados de forma más detallada. Desplácese hacia abajo para ver el informe completo.

Los siguientes Test Details (Detalles de la prueba) se muestran en la parte central de la pantalla (figura 19):

- User ID (Identificador de usuario)
- Cartridge SN (SN de cartucho [número de serie])
- Cartridge Expiration Date (Fecha de caducidad del cartucho)
- Module SN (SN de módulo [número de serie])
- Test Status (Estado de la prueba: Completed [Finalizada], Failed [Con error] o Canceled [Cancelada] por el operador)
- Error Code (Código de error) (si procede)
- Test Start Date and Time (Fecha y hora de inicio de la prueba)
- Test Execution Time (Hora de ejecución de la prueba)
- Assay Name (Nombre del ensayo)
- Test ID (Identificador de la prueba)
- Resultado de la Prueba:

- O **Positive** (Positivo) (si se ha detectado o identificado al menos un microrganismo patógeno de la meningitis/encefalitis)
- Negative (Negativo) (si no se ha detectado ningún microrganismo patógeno de la meningitis/encefalitis)
- O Failed (Con error) (se ha producido un error o el usuario ha cancelado la prueba)
- Lista de analitos probados en el ensayo, con los valores de C₁ y fluorescencia de punto final en caso de una señal positiva
- Control interno, con los valores de C_T y fluorescencia de punto final

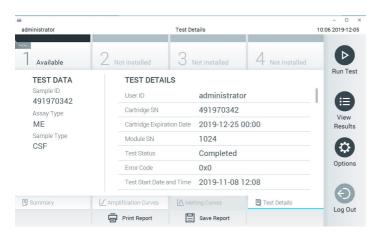


Figura 19. Pantalla de ejemplo que muestra Test Data (Datos de la prueba) en el panel izquierdo y Test Details (Detalles de la prueba) en el panel principal.

Búsqueda de resultados de pruebas anteriores

Para ver resultados de pruebas anteriores guardados en el depósito de resultados, pulse View Results (Ver resultados) en la barra del menú principal (figura 20).

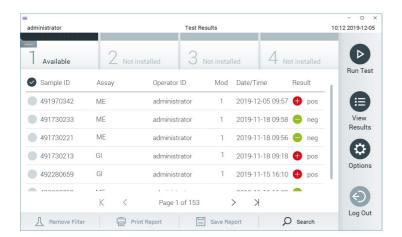


Figura 20. Ejemplo de la pantalla View Results (Ver resultados).

Se dispone de la siguiente información para cada una de las pruebas realizadas (figura 21):

- Sample ID (ID de Muestra)
- Assay (Ensayo) (nombre del ensayo de la prueba, en el que "ME" significa Meningitis/Encephalitis Panel)
- Operator ID (ID del Operador)
- Mod (Módulo) (módulo analítico en el que se ha ejecutado la prueba)
- Date/Time (Fecha/hora) (fecha y hora en las que se ha finalizado la prueba)
- Result (Resultado) (resultado de la prueba: [pos] [positivo], [neg] [negativo], [fail]
 [con error] o [suc] [correcto])

Nota: Si la función User Access Control (Control de acceso de usuarios) está activa en el QIAstat-Dx Analyzer 1.0, los datos para los cuales el usuario no posea derechos de acceso aparecerán ocultos con asteriscos.

Para seleccionar uno o más resultados de pruebas, pulse el círculo gris que está a la izquierda del identificador de muestra. Aparecerá una marca de verificación junto a los resultados seleccionados. Para anular la selección de los resultados de pruebas, pulse esta marca de verificación. La lista completa de resultados se puede seleccionar pulsando el círculo de la marca de verificación en la fila superior (figura 21).

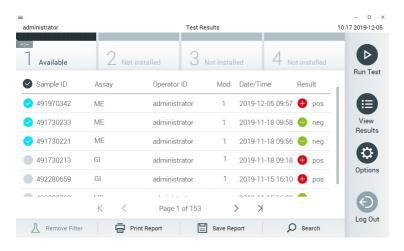


Figura 21. Ejemplo de cómo seleccionar Test Results (Resultados de pruebas) en la pantalla View Results (Ver resultados).

Pulse en cualquier lugar de la fila de la prueba para ver el resultado de una prueba en concreto.

Pulse sobre un encabezado de columna (p. ej., Sample ID [Identificador de muestra]) para clasificar la lista en orden ascendente o descendente según ese parámetro. La lista se puede clasificar según una sola columna a la vez.

La columna Result (Resultado) muestra el resultado de cada prueba (tabla 2).

Tabla 2. Descripciones de los resultados de la prueba en la pantalla View Results (Ver resultados)

Resultado	Resultado	Descripción	Acción
Positive (Positivo)	⊕ pos	Al menos un patógeno arroja un resultado positivo	Para obtener información sobre resultados de microrganismos patógenos específicos, consulte la pantalla de resultados Summary (Resumen) o Result Printout (Impresión de resultados).
Positive with warning (Positivo con advertencia)	et!pos*	Al menos un microrganismo patógeno arroja un resultado positivo, pero el control interno resultó erróneo	Para obtener información sobre resultados de microrganismos patógenos específicos, consulte la pantalla de resultados Summary (Resumen) o Result Printout (Impresión de resultados).
Negative (Negativo)	neg	No se han detectado analitos	Para obtener información sobre resultados de microrganismos patógenos específicos, consulte la pantalla de resultados Summary (Resumen) o Result Printout (Impresión de resultados).
Failed (Con error)	⊗ fail	La prueba ha fallado, ya sea porque se ha producido un error, el usuario ha cancelado la prueba o no se detectaron microrganismos patógenos y se ha producido un error en el control interno.	Repita la prueba con un cartucho nuevo. Acepte los resultados de la segunda prueba. Si el error persiste, póngase en contacto con el servicio técnico de QIAGEN para recibir más instrucciones.
Successful (Correcto)	Suc	La prueba ha arrojado un resultado positivo o negativo, pero el usuario no posee derechos de acceso para ver los resultados de la prueba.	Inicie sesión desde un perfil de usuario que tenga derechos para ver los resultados.

Pulse Save Report (Guardar informe) para guardar los informes de los resultados seleccionados en formato PDF en un dispositivo de almacenamiento externo USB.

Seleccione el tipo de informe: List of Tests (Lista de pruebas) o Test Reports (Informes de pruebas).

Pulse el botón Search (Buscar) si desea buscar los resultados de la prueba por Sample ID (Identificador de muestra), Assay (Ensayo) y Operator ID (Identificador del operador). Introduzca la cadena de búsqueda con el teclado virtual y pulse Enter (Intro) para iniciar la búsqueda. En los resultados de la búsqueda, solo se mostrarán los registros que contengan el texto de búsqueda.

Si se ha aplicado un filtro a la lista de resultados, la búsqueda solo se aplicará a la lista filtrada.

Mantenga pulsado un encabezado de columna para aplicar un filtro en función de dicho parámetro. En el caso de algunos parámetros, como Sample ID (Identificador de muestra), aparecerá el teclado virtual para poder introducir la cadena de búsqueda para el filtro.

En el caso de otros parámetros, como Assay (Ensayo), se abrirá un cuadro de diálogo con una lista de los ensayos almacenados en el depósito. Seleccione uno o más ensayos para filtrar únicamente las pruebas realizadas con los ensayos seleccionados.

El símbolo T a la izquierda de un encabezado de columna indica que el filtro de la columna está activo.

Para eliminar un filtro, pulse el botón Remove Filter (Eliminar filtro) en la barra del menú secundario.

Exportación de resultados a una unidad USB

Desde cualquier pestaña de la pantalla View Results (Ver resultados), seleccione Save Report (Guardar informe) para exportar y guardar una copia de los resultados de la prueba en formato PDF en una unidad USB (figura 22 a figura 24). El puerto USB se encuentra en la parte delantera del QIAstat-Dx Analyzer 1.0. La interpretación de los resultados en el archivo PDF se muestra en la tabla siguiente.

Tabla 3. Interpretación de los resultados de las pruebas que aparecen en los informes en PDF.

	Resultado	Símbolo	Descripción
	Detected (Detectado)	0	Patógeno detectado
Resultado de patógeno	Not Detected (No detectado)	Sin símbolo	Patógeno no detectado
	Invalid (No válido)	Sin símbolo	El control interno ha fallado, <u>no</u> hay un resultado válido para esta diana y es preciso volver a analizar la muestra
Estado de la prueba	Completed (Completado)	②	La prueba se completó y se detectaron el control interno y/o una o varias dianas.
	Failed (Con error)	8	La prueba ha fallado
Controles internos	Passed (Resultado superado)	②	La comprobación del control interno es correcta
	Failed (Con error)	8	Se ha producido un error en el control interno

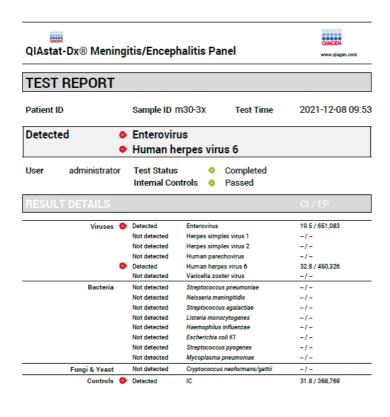


Figura 22. Informe del análisis de una muestra

EST DETAILS				
Assay ME	Cartridge SN 512	900123	SN Operational module	20719052
v1.1	Cartridge LOT 210	290	SN Analytical module	10221072
Sample CSF	Expiration Date 202	2-03-09	SW Version	1.4.0 build 8

Figura 23. Informe de análisis de ejemplo con los detalles de la prueba

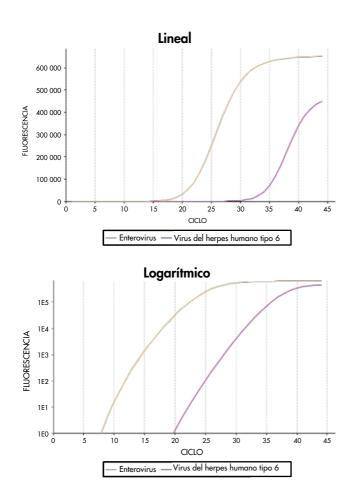


Figura 24. Informe del análisis de una muestra con los datos del ensayo.

Impresión de los resultados

Asegúrese de que haya una impresora conectada al QIAstat-Dx Analyzer 1.0 y de que esté instalado el controlador adecuado. Seleccione Print Report (Imprimir informe) para enviar una copia de los resultados de la prueba en PDF a la impresora.

Interpretación de los resultados

Un resultado de un microrganismo de la meningitis/encefalitis se interpreta como **Positive** (Positivo) cuando el ensayo de PCR correspondiente es positivo.

Interpretación del control interno

Los resultados del control interno se interpretarán de conformidad con la tabla 4.

Tabla 4. Interpretación de los resultados del control interno

Resultado de los controles	Explicación	Acción
Passed (Resultado superado)	El control interno se ha amplificado correctamente	La serie se ha completado satisfactoriamente. Todos los resultados son válidos y se pueden notificar. Los patógenos detectados se notifican como positive (positivos) y los no detectados se informan como negative (negativos).
Failed (Con error)	Se ha producido un error en el control interno	Se notifican los patógenos detectados positivamente, pero todos los resultados negativos (patógenos analizados, pero no detectados) son inválidos. Repita la prueba con un QIAstat-Dx Meningitis/Encephalitis Panel Cartridge nuevo.

Control de calidad

En cumplimiento del sistema de gestión de calidad con certificación ISO de QIAGEN, cada lote del QIAstat-Dx ME Panel se ha probado con las especificaciones predeterminadas para garantizar la uniformidad de la calidad de los productos.

Limitaciones

- Los resultados del QIAstat-Dx ME Panel no están pensados para utilizarse como el único fundamento en el que sustentar el diagnóstico, el tratamiento u otras decisiones de atención médica al paciente.
- La obtención de unos resultados positivos no descarta la infección conjunta por otros microrganismos no incluidos en el QIAstat-Dx ME Panel. El o los microrganismos detectados pueden no ser la causa definitiva de la enfermedad. Los resultados negativos no descartan la infección del sistema nervioso central (SNC), este ensayo no detecta todos los posibles agentes etiológicos y los patógenos detectados por el QIAstat-Dx ME Panel podrían estar presentes en concentraciones inferiores a los límites de detección del sistema.
- Esta prueba no detecta todos los agentes relacionados con una infección del SNC y la sensibilidad en algunos ámbitos clínicos puede diferir de la descrita en el prospecto del envase.
- El QIAstat-Dx ME Panel no está previsto para el análisis de muestras obtenidas de productos sanitarios internos del SNC.
- La obtención de un resultado negativo con el ME Panel no excluye el carácter infeccioso del síndrome. La obtención de resultados negativos en el ensayo puede deberse a varios factores o a su combinación, como errores de manipulación de muestras, variabilidad de las secuencias del ácido nucleico a las que está dirigido el ensayo, infección por microrganismos no incluidos en el ensayo, niveles de microrganismos incluidos que están por debajo del límite de detección del ensayo y uso de ciertos medicamentos, terapias o sustancias.

- El QIAstat-Dx ME Panel no se ha diseñado para analizar muestras distintas de las descritas en estas instrucciones de uso. Las características del rendimiento de la prueba solo se han determinado con LCR.
- El QIAstat-Dx ME Panel se ha diseñado para utilizarse junto con procedimientos diagnósticos habituales (p. ej., cultivos para realizar la recuperación de microrganismos, la determinación del serotipo y la prueba de la susceptibilidad a los antibióticos). Un profesional sanitario formado debe interpretar los resultados obtenidos con el QIAstat-Dx ME Panel dentro del contexto de todos los hallazgos clínicos, de laboratorio y epidemiológicos pertinentes.
- El QlAstat-Dx ME Panel solo se puede usar con el QlAstat-Dx Analyzer 1.0.*
- El QlAstat-Dx ME Panel es un ensayo cualitativo, por lo que no proporciona un valor cuantitativo sobre los microrganismos detectados.
- Los ácidos nucleicos bacterianos, víricos y fúngicos pueden persistir in vivo, incluso si el microrganismo no es viable o infeccioso. La detección de un marcador diana no implica que el microrganismo correspondiente sea el microbio causante de la infección ni de los síntomas clínicos
- La detección de ácidos nucleicos bacterianos, víricos y fúngicos depende de que se efectúe una obtención, una manipulación, un transporte, un almacenamiento y una carga de la muestra en el QIAstat-Dx ME Panel Cartridge correctos. Si se efectúa incorrectamente cualquiera de los procesos citados, se pueden generar resultados incorrectos, incluidos resultados positivos falsos o negativos falsos.
- La sensibilidad y especificidad del ensayo, con respecto a los microrganismos específicos y a todos los microrganismos combinados, son parámetros de rendimiento intrínsecos de un ensayo cualquiera y no difieren según la prevalencia. Por el contrario, los valores predictivos positivos y negativos de un resultado de la prueba dependen de la prevalencia de la enfermedad o el microrganismo. Cabe destacar que una mayor prevalencia favorece el valor predictivo positivo de un resultado, mientras que una prevalencia menor favorece el valor predictivo negativo de un resultado.

Los instrumentos del DiagCORE Analyzer que funcionan con la versión 1.4 o superior del software del QIAstat-Dx se pueden utilizar como alternativa al QIAstat-Dx Analyzer 1.0.

- La contaminación accidental de la muestra de LCR con Propionibacterium acnes (un microrganismo habitual de la microflora comensal de la piel) puede generar una señal inesperada (positiva baja) para la diana Mycoplasma pneumoniae en el QIAstat-Dx ME Panel. La aplicación de las medidas habituales en la manipulación de muestras de LCR deberían prevenir esta posible contaminación.
- Los resultados obtenidos durante el estudio de infecciones concomitantes en la verificación analítica muestran una posible inhibición de la detección del VHS-1 cuando S. pneumoniae está presente en la misma muestra. Dado que este efecto se observó incluso con concentraciones bajas de S.pneumoniae, los resultados negativos para VHS-1 en muestras positivas para S.pneumoniae deben interpretarse con precaución. No se observó el efecto contrario (inhibición de S.pneumoniae cuando el VSH-1 está presente en la misma muestra) en la concentración más alta analizada de VHS-1 (1,00E+05 TCID₅₀/ml).

Características del rendimiento

Rendimiento clínico

Las características del rendimiento del QIAstat-Dx Meningitis/Encephalitis (ME) Panel se evaluaron en un estudio de rendimiento clínico observacional y retrospectivo, que incluyó el análisis de 585 muestras residuales aptas de líquido cefalorraquídeo (LCR) obtenidas mediante punción lumbar de pacientes con signos y síntomas de meningitis o encefalitis con el QIAstat-Dx ME Panel en tres centros de análisis clínicos en Europa (Tabla 5).

Tabla 5. Número de participantes por centro de análisis clínicos

Centros	Número de muestras aptas
Alemania	200
Francia	194
Dinamarca	191
Global/Total	585

En la tabla 6 se proporciona un resumen de las muestras de información demográfica incluidas en el estudio.

Tabla 6. Resumen de los datos demográficos del estudio del rendimiento clínico

Variable	Subgrupo	N	%
	<2 años	9	1,55
	2-17 años	24	4,15
Grupo de edad	18-64 años	319	55,09
	≥65 años	212	36,61
	N.E.	15	2,60
	Femenino	282	48,70
Sexo	Masculino	282	48,70
	N.E.	15	2,60

El rendimiento del QIAstat-Dx ME panel se evaluó al comparar el resultado la prueba de QIAstat-Dx ME Panel y el FilmArray Meningitis/Encephalitis Panel. Cuando se detectaba una discrepancia entre métodos, la discordancia se resolvía considerando el resultado de los procedimientos diagnósticos habituales (RT-PCR o cultivo).

De las 585 muestras clínicas aptas, 579 produjeron un resultado evaluable. Se incluyeron muestras artificiales (n = 367) para evaluar el rendimiento de microrganismos patógenos con baja prevalencia (*Neisseria meningitidis*, *Streptococcus agalactiae*, enterovirus, virus del herpes simple 1 y parechovirus humano) y para *Mycoplasma pneumoniae* y *Streptococcus pyogenes*. Por cada microrganismo patógeno que se elaboró, se añadieron las cepas elegidas en una matriz clínica negativa en al menos 10 muestras o grupos de LCR negativo diferentes. Una vez preparadas, las muestras artificiales se aleatorizaron y enmascararon, tras lo cual se enviaron a los centros clínicos para su análisis con el flujo de trabajo habitual. En la tabla 7 se presentan las muestras incluidas en el cálculo de rendimiento.

Tabla 7. Distribución de las muestras clínicas y artificiales analizadas

Variable	Subgrupo		N	%
Tipo de	Clínico		579	61,20
muestra	Artificial	Global	367	38,80
		Neisseria meningitidis	65	6,87
		Streptococcus agalactiae	61	6,45
		Streptococcus pyogenes	61	6,45
		Mycoplasma pneumoniae	61	6,45
		Enterovirus	60	6,34
		Parechovirus humano	59	6,24

El porcentaje de concordancia positiva (PCP) se calculó como 100 % x (VP/[VP + FN]). Verdadero positivo (VP) indica que tanto el QlAstat-Dx ME Panel como el método de referencia/comparación arrojaron un resultado positivo para el analito específico, y falso negativo (FN) indica que el resultado fue negativo con QlAstat-Dx y positivo con el método de comparación. El porcentaje de concordancia negativa (PCN) se calculó como 100 % x (VN/[VN + FP]). Verdadero negativo (VN) indica que tanto el QlAstat-Dx ME Panel

como el método de referencia/comparación arrojaron un resultado negativo, y falso positivo (FP) indica que el resultado fue positivo con el QIAstat-Dx ME Panel pero negativo con el método de comparación. Se calculó el intervalo de confianza del 95 % bilateral binomial exacto. En la tabla 8 se muestra el rendimiento global (PPA y NPA) de todos los microrganismos patógenos en el QIAstat-Dx ME Panel al añadir resultados de muestras clínicas y artificiales. En la tabla 8 se enumeran los resultados de PPA y NPA para el QIAstat-Dx ME Panel. En el caso de PPA, cada diana específica si el cálculo de rendimiento está basado en muestras clínicas, muestras artificiales o una combinación de ambas. El NPA se informa únicamente con base en las muestras clínicas.

Tabla 8. Evaluación del criterio de aceptación de rendimiento clínico en cuanto a sensibilidad y especificidad, tras la resolución de resultados discordantes con la prueba de referencia

				PPA			NPA	
Tipo de micror- ganismo patógeno	Diana	Origen de las pruebas	PV/ (PV + NF)	%	IC del 95 %	NV/ (NV + PF)	%	IC del 95 %
Todos	Global	Clínico	140/147	95,24	90,50%- 97,67%	7381/7386	99,93%	99,84%- 99,97%
	Escherichia coli K1	Clínico	1/1	100,00 %	20,65 %- 100,00 %	579/579	100,00 %	99,34 %- 100,00 %
	Haemophilus influenzae	Clínico	4/4	100,00 %	51,01 % 100,00 %	573/575	99,65 %	98,74 %- 99,90 %
	Listeria monocytogenes	Clínico	1/1	100,00 %	20,65 % 100,00 %	578/578	100,00 %	99,34 %- 100,00 %
	Mycoplasma pneumoniae	Artificial	61/61	100,00 %	94,08 %- 100,00 %	NA	NA	NA
Bacterias	Neisseria meningitidis	Com- binado	66/66	100,00 %	94,5 %- 100,00 %	578/578	100,00 %	99,34 %- 100,00 %
	Streptococcus agalactiae	Com- binado	63/64	98,44 %	91,67 % 99,72 %	576/576	100,00 %	99,34 %- 100,00 %
	Streptococcus pneumoniae	Clínico	16/16	100,00 %	80,64%- 100,00%	563/563	100,00 %	99,32 %- 100,00 %
	Streptococcus pyogenes	Artificial	61/61	100,00 %	94,08 % 100,00 %	NA	NA	NA
	Bacterias global	Clínico	26/26	100,00%	87,13%- 100,00%	3447/3449	99,94%	99,79%- 99,98%

Tabla 8. (continúa de la página anterior)

				PPA			NPA	
Tipo de micror- ganismo patógeno	Diana	Origen de las pruebas	PV/ (PV + NF)	%	IC del 95 %	NV/ (NV + PF)	%	IC del 95 %
	Enterovirus	Combinado	66/69	95,65 %	87,98 %- 98,51 %	570/570	100,00 %	99,33 %- 100,00 %
	Virus del herpes simple 1 (VHS-1)	Clínico	20/20	100,00 %	83,89 %- 100,00 %	561/561	100,00 %	99,32 %- 100,00 %
	Virus del herpes simple 2 (VHS-2)	Clínico	23/25	92,00 %	75,03 %- 97,78 %	555/555	100,00 %	99,31 %- 100,00 %
Virus	Parechovirus humano (HPeV)	Artificial	59/59	100,00 %	93,89 %- 100,00 %	579/579	100,00 %	99,34 %- 100,00 %
	Virus del herpes humano tipo 6 (VHH-6)	Clínico	10/11	90,91%	62,26 %- 98,38 %	568/569	99,82 %	99,01 %- 99,97 %
	Virus de la varicela-zóster	Clínico	52/55	94,55 %	85,15 % 98,13 %	523/525	99,62 %	98,62 %- 99,90 %
	Virus global	Clínico	113/120	94,17%	88,45%- 97,15%	3356/3359	99,91%	99,74%- 99,97%
Levadura	Cryptococcus gattii/ Crypto-coccus neoformans	Clínico	1/1	100,00 %	20,65 %- 100,00 %	5578/5781	100,00 %	99,34 % 100,00 %

Había once (11) cartuchos (de series de 596 cartuchos) que no produjeron un resultado válido, lo que supuso una tasa de éxito del 98,16% en la serie de cartuchos.

Conclusión

El QlAstat-Dx Meningitis/Encephalitis Panel mostró sólidas características del rendimiento clínico para facilitar el diagnóstico de agentes específicos de la meningitis y/o la encefalitis y los resultados deben utilizarse junto con otros datos clínicos, epidemiológicos y de laboratorio.

Rendimiento analítico

Sensibilidad (límite de detección)

La sensibilidad analítica o el límite de detección (Limit of Detection, LoD) se define como la concentración mínima en la que ≥95 % de las muestras analizadas generan un resultado positivo.

Se evaluó el LoD de cada microrganismo patógeno del QlAstat-Dx Meningitis/Encephalitis Panel analizando las diluciones de muestras analíticas preparadas a partir de soluciones de partida obtenidas de proveedores comerciales (ZeptoMetrix® y ATCC®).

Se determinó la concentración del LoD de un total de 40 cepas patógenas. El LoD del QIAstat-Dx Meningitis/Encephalitis Panel se determinó por analito usando cepas seleccionadas que representan cada uno de los patógenos que pueden detectarse con el QIAstat-Dx Meningitis/Encephalitis Panel. Todas las diluciones de la muestra se prepararon con LCR clínico negativo. Para confirmar la concentración del LoD establecida, la tasa de detección necesaria de todas las réplicas fue ≥95 %.

Se utilizaron como mínimo cuatro lotes de cartuchos diferentes y al menos tres QlAstat-Dx Analyzers diferentes en la determinación del LoD de cada microrganismo patógeno.

En la tabla 9 se muestran los valores de LoD de cada una de las dianas del QIAstat-Dx ME Panel.

Tabla 9. Resultados del límite de detección

Microrganismo patógeno	Сера	Proveedor	Unidades	LoD
VHS-1	HF	ATCC	TCID ₅₀ /ml	2,81E+02
VHS1	Macintyre	ZeptoMetrix	TCID ₅₀ /ml	3,38E+02
VHS-2	G	ATCC	TCID ₅₀ /ml	2,81E+01
VHS2	VHS-2. (Cepa: MS)	ZeptoMetrix	U/ml	1,26E+01
Escherichia coli K1	Cepa C5 [Bort]; O18ac:K1:H7	ATCC	UFC/ml	3,48E+02
Escherichia coli K1	NCTC 9001. Serovar O1:K1:H7	ATCC	UFC/ml	7,86E+02
Haemophilus influenzae	tipo b (encapsulado)	ATCC	UFC/ml	3,16E+02
Haemophilus influenzae	Tipo e [cepa AMC 36-A-7]	ATCC	UFC/ml	2,54E+03

Tabla 9 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Сера	Proveedor	Unidades	LoD
Listeria monocytogenes	Tipo 1/2b	ZeptoMetrix	UFC/ml	5,89E+02
Listeria monocytogenes	Tipo 4b. Cepa Li 2	ATCC	UFC/ml	6,64E+03
Neisseria meningitidis (encapsulado)	Serotipo B. M2092	ATCC	UFC/ml	8,28E-02
Neisseria meningitidis (encapsulado)	Serotipo Y. M-112 [BO-6]	ATCC	UFC/ml	1,33E+01
Streptococcus agalactiae	Z019	ZeptoMetrix	UFC/ml	1,75E+03
Streptococcus agalactiae	G19 grupo B	ATCC	UFC/ml	3,38E+03
Streptococcus pneumoniae	19F	ZeptoMetrix	UFC/ml	7,14E+02
Streptococcus pneumoniae	Serotipo 1. NCTC 7465	ATCC	UFC/ml	6,22E-01
Streptococcus pyogenes	Z472; Serotipo M1	ZeptoMetrix	UFC/ml	1,80E+03
Streptococcus pyogenes	Bruno [CIP 104226]	ATCC	UFC/ml	9,10E+01
Mycoplasma pneumoniae	PI 1428	ATCC	UFC/ml	9,48E+01
Mycoplasma pneumoniae	M129	ZeptoMetrix	UFC/ml	9,99E+01
Citomegalovirus	AD-169	ZeptoMetrix	TCID ₅₀ /ml	2,45E+00
Citomegalovirus	Davis	ATCC	TCID ₅₀ /ml	1,00E+01
Enterovirus A	Virus de Coxsackie A16	ZeptoMetrix	TCID₅₀/ml	3,79E+00
Enterovirus A	A6, especie A. Cepa Gdula	ATCC	TCID ₅₀ /ml	1,60E+02
Enterovirus B	Virus de Coxsackie B5	ZeptoMetrix	TCID ₅₀ /ml	8,91E+01
Enterovirus B	Virus de Coxsackie A9, especie B	ZeptoMetrix	TCID ₅₀ /ml	4,36E+01
Enterovirus C	Virus de Coxsackie A17, especie C. Cepa G-12	ATCC	TCID₅o/ml	1,58E+01
Enterovirus C	Virus de Coxsackie A24. Cepa DN-19	ATCC	TCID ₅₀ /ml	4,99E+00

Tabla 9 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Сера	Proveedor	Unidades	LoD
Enterovirus D	EV 70, especie D, cepa J670/71	ATCC	TCID₅o/ml	4,99E+01
Enterovirus D	Enterovirus D68. Cepa US/MO/14- 18947	ATCC	TCID ₅₀ /ml	5,06E+02
VHH-6	VHH-6A. (Cepa: GS) Lisado	ZeptoMetrix	cp/ml	3,13E+04
VHH6	VHH-6B. (Cepa: Z29)	ZeptoMetrix	cp/ml	7,29E+04
HPeV	Serotipo 1. Cepa Harris	ZeptoMetrix	TCID₅₀/ml	1,07E+03
HPeV	Serotipo 3	ZeptoMetrix	TCID ₅₀ /ml	3,38E+01
VZV	Ellen	ZeptoMetrix	cp/ml	1,71E+02
VZV	Oka	ATCC	TCID ₅₀ /ml	5,00E-02
Cryptococcus neoformans	Serotipo D, cepa WM629, tipo VNIV	ATCC	UFC/ml	2,21E+03
Cryptococcus neoformans	C. neoformans H99	ATCC	UFC/ml	1,64E+02
Cryptococcus gattii	Serotipo B, cepa R272, tipo VGIIb	ATCC	UFC/ml	1,32E+04
Cryptococcus gattii	A6MR38 [CBS 11545]	ATCC	UFC/ml	2,60E+03

Inclusividad (reactividad analítica)

El estudio de inclusividad (reactividad analítica) amplió la lista de cepas patógenas analizadas durante el estudio de límite de detección (Limit of Detection, LoD) del QIAstat-Dx Meningitis/Encephalitis Panel para confirmar la reactividad del sistema de detección en presencia de diferentes cepas de los mismos microrganismos en una concentración cercana al respectivo límite de detección.

En el estudio se incluyeron diversas cepas clínicamente relevantes de cada microrganismo diana del QIAstat-Dx ME Panel (cepas de inclusividad) representativas de los subtipos, cepas

y serotipos de los microrganismos de diferentes contextos temporales y geográficos de cada analito. El estudio de reactividad analítica (inclusividad) se llevó a cabo en dos pasos:

- Análisis in vitro: se evaluaron muestras analíticas de cada diana incluida en el QIAstat-Dx ME Panel para determina la reactividad del ensayo. En el estudio se incluyó un conjunto de 178 muestras representativas de cepas, subtipos, serotipos y genotipos relevantes para los distintos microrganismos (p. ej., una variedad de diferentes cepas de meningitis/encefalitis aisladas de distintas partes del mundo y en diferentes años calendario).
- Análisis informático: se realizó un análisis informático para hacer predicciones sobre la reactividad del ensayo de todas las secuencias de oligonucleótidos de cebadores-sondas incluidas en el panel en comparación con las bases de datos de secuencias públicamente disponibles para detectar cualquier posible reacción cruzada o la detección inesperada de cualquier conjunto de cebadores. Además, las cepas no disponibles para análisis in vitro se incluyeron en los análisis informáticos para confirmar la inclusividad prevista de las diferentes cepa de los mismos microrganismos.

Tabla 10. Cepas/subtipos clínicamente relevantes detectados por patógeno

Microrganismo patógeno	Cepas/subtipos clínicamente relevantes detectados
Neisseria meningitidis (encapsulado)	Serotipos encapsulados (A, B, C, D, E, H, I, K, L, NG, W, W135, X, Y, Z, 29E)
Cryptococcus gattii/ Cryptococcus neoformans	Serotipo A (C. neoformans var neoformans), serotipo D (<i>C. neoformans</i> var grubii), serotipos B y C (C. gattii incluidos todos los tipos moleculares VGI, VGII, VGIII, VGIV)
Parechovirus humano	Todas las cepas de parechovirus A humano con secuencia 5'-UTR disponible {1, 2, 3, 4, 5, 6, 7, 8, 14, 16, 17, 18 y 19}, incluidos el virus ECHO 22 (HPeV 1) y el virus ECHO 23 (HPeV 2). Aunque había secuencias de poliproteínas para las cepas 9, 10, 11, 12, 13 y 15 de HPeV A, no había secuencias 5'-UTR disponibles.
Listeria monocytogenes	Serotipos 1/2a,1/2b, 1/2c, 3a, 3b, 3c, 4a, 4b, 4c, 4d, 4e, 7
Virus del herpes humano tipo 6	VHH6a y VHH6b
Haemophilus influenzae	Todos los serotipos encapsulados (a, b, c, d, e, f) y las cepas no encapsuladas (no tipificables, NTHi) incluyendo var. <i>H. aegyptus</i>
Enterovirus	Virus de Coxsackie A (de CV-A1 a CV-A24), virus de Coxsackie B (de CV-B1 a CV-B6), virus Echo (de E-1 a E-33), Enterovirus A (EV-A71, EV-A76, de EV-A89 a EV-A92, EV-A119, EV-A120), Enterovirus B (EV-B69, de EV-B73 a EV-B75, EV-B79, de EV-B80 a EV-B88, EV-B93, EV-B99, EV-B98, EV-B100, EV-B101, EV-B106, EV-B107, EV-B111), Enterovirus C (EV-C96, EV-C99, EV-C102, EV-C104, EV-C105, EV-C109, de EV-C116 a EV-C118), Enterovirus D (EV-D68, EV-D70, EV-D94), virus de la poliomielitis (de PV-1 a PV-3)
Escherichia coli K1	Cepas K1
LSCHEHCHIG COH KT	Cepus K1

En la tabla 11 se detallan las cepas sometidas a análisis de inclusividad.

Tabla 11. Cepas sometidas a análisis de inclusividad

Microrganismo patógeno	Cepa/serotipo	Proveedor
	Cepa C5 [Bort]; O18ac:K1:H7	ATCC
	NCTC 9001. Serovar O1:K1:H7	ATCC
	Cepa Bi 7509/41; O7:K1:H-	NCTC
	NCDC Bi 7509-41 Serotipo O7:K1(L):NM	ATCC
Escherichia coli K1	NCDC F 11119-41	ATCC
	O-2, U9-41*	BEI Resources
	O-16, F1119-41*	BEI Resources
	Z136 CTX-M-15	ZeptoMetrix
	Sc15 02:K1:H6	NCTC
	Cepa H61; O45:K1:H10	NCTC
	tipo b (encapsulado)	ATCC
	Tipo e [cepa AMC 36-A-7]	ATCC
	No tipificable [cepa Rd KW20]	ATCC
	No tipificable [cepa 180-a]	ATCC
Unancabiles influences	Tipo a [cepa AMC 36-A-3]	ATCC
Haemophilus influenzae	Tipo b [cepa Rab]	ATCC
	Tipo c [cepa C 9007]	ATCC
	Tipo d [cepa AMC 36-A-6]	ATCC
	Tipo f [cepa GA-1264]	ATCC
	L-378	ATCC
Listeria monocytogenes	Tipo 1/2b	ZeptoMetrix
	Tipo 4b. Cepa Li 2	ATCC
	Tipo 1/2a. Cepa 2011L-2676	ATCC
	Tipo 1/2a. Cepa li 20	ATCC
	Tipo 4b	ZeptoMetrix

Tabla 11 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Cepa/serotipo	Proveedor
	Serotipo 4b. Cepa 1071/53 [LMG 21264, NCTC 10527]	ATCC
	Li 23. Serotipo 4a	ATCC
Escherichia coli K1	FSL J2-064	BEI Resources
	Gibson	ATCC
	EGDe	ATCC
	PI 1428	ATCC
	M129	ZeptoMetrix
Mycoplasma pneumoniae	Cepa FH de agente Eaton [NCTC 10119]	ATCC
	UTMB-1 OP	ATCC
	MAC	ATCC
	Serotipo B. M2092 [CIP 104218, L. Cunningham]	ATCC
	Serotipo Y. M-112 [BO-6]	ATCC
	Serogrupo A, M1027 [NCTC10025]	ATCC
	Serogrupo C, M1628	ATCC
Neisseria meningitidis	Serotipo D. M158 [37A]	ATCC
(encapsulado)	secuencia con variante del gen ctrA	IDT
	W135	ATCC
	MC58	ATCC
	79 Eur. Serogrupo B	ATCC
	Serotipo B. M997 [S-3250-L]	ATCC
	Z019	ZeptoMetrix
Streptococcus agalactiae	G19 grupo B	ATCC
	Serotipo III. Cepa de tipificación D136C(3) [3 Cole 106, CIP 82.45]	ATCC
	tipo III-ST283	ATCC
	MNZ929	BEI Resources

Tabla 11 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Cepa/serotipo	Proveedor	
	Cepa de tipificación H36B - tipo lb	ATCC	
	CDC SS700 [A909; 5541], tipo 1c	ATCC	
Streptococcus agalactiae	3139 [CNCTC 1/82] Serotipo IV	ATCC	
	Z023	ZeptoMetrix	
	19F	ZeptoMetrix	
	Serotipo 1. NCTC 7465	ATCC	
	Serotipo 4. TIGR4 [JNR.7/87]	ATCC	
	Serotipo 5. SPN1439-106 [Colombia 5-19]	ATCC	
	Serotipo 11A. Tipo 43	ATCC	
Streptococcus pneumoniae	Serotipo 14. VH14	ATCC	
	Serotipo 19A. Hungría 19A-6 [HUN663]	ATCC	
	Z319; 12F Zeptometrix		
	Diplococcus pneumoniae; tipo 3. Cepa [CIP 104225]	ATCC	
	DCC1476 [Suecia 15A-25]	ATCC	
	Z472; Serotipo M1	ZeptoMetrix	
	Bruno [CIP 104226]	ATCC	
	Z018; Serotipo M58	ZeptoMetrix	
	Serotipo M1. MGAS 5005	ATCC	
	Grupo A de Lancefield/C203 S	ATCC	
Streptococcus pyogenes	NCTC 8709 (Tipo 6 con brillo)	ATCC	
	Grupo a, tipo 12. Cepa de tipificación T12 [F. Griffith SF 42]	ATCC	
	Grupo a, tipo 14	ATCC	
	Grupo a, tipo 23	ATCC	
	C203 -Tipo 3	ATCC	

Tabla 11 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Cepa/serotipo	Proveedor
	Virus de Coxsackie A16	ZeptoMetrix
	A6, especie A. cepa Gdula	ATCC
	A10. M.K. (Kowalik)	ATCC
	Enterovirus 71. Cepa H	ATCC
Enterovirus A	Especie A, Serotipo EV-A71 (cepa aislada en 2003)	ZeptoMetrix
	Tainan/4643/1998	BEI Resources
	A2 Fl [Fleetwood]	ATCC
	A7 - 275/58	ATCC
	A12 - Texas 12	ATCC
	EV-A71. Cepa BrCr	ATCC
	Virus de Coxsackie B5	ZeptoMetrix
	Virus de Coxsackie A9, especie B	ZeptoMetrix
	Especie B, Serotipo CV-B1, Cepa Conn-5	ATCC
	Especie B, Serotipo CV-B2. Cepa Ohio-1	ATCC
Enterovirus B	Virus de Coxsackie B4	ZeptoMetrix
LillerOvilus D	Virus ECHO 6	ZeptoMetrix
	Virus ECHO 9	ZeptoMetrix
	Virus de Coxsackie B3	ZeptoMetrix
	Virus ECHO 18	NCPV
	Especie B, Serotipo E-11	ATCC
	Virus de Coxsackie A17, especie C. Cepa G- 12	ATCC
Enterovirus C	Virus de Coxsackie A24. Cepa DN-19	ATCC
	Virus de Coxsackie A21. Cepa Kuykendall [V-024-001-012]	ATCC
	A11 - Bélgica-1	ATCC
	A13 - Flores	ATCC

Tabla 11 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Proveedor	Id. de catálogo	Cepa/serotipo
	ATCC	VR-182*	A22 - Chulman
	ATCC	VR-178*	A20 - IH grupo 35
Enterovirus C	ATCC	VR-176*	A18 - G-13
	NCTC	0812075v	CV-A21. Cepa H06452 472
	NCTC	0812074v	CV-A21. Cepa H06418 508
	ATCC	VR-836	EV 70, especie D, cepa J670/71
	ATCC	VR-1823	Enterovirus D68. Cepa US/MO/14-18947
	ZeptoMetrix	0810237CF	Enterovirus 68. Cepa aislada en 2007
	ATCC	VR-1824	Enterovirus D68. Cepa US/IL/14-18952
Entraria D	ATCC	VR-1197	D68. Cepa F02-3607 Corn
Enterovirus D	ZeptoMetrix	0810302CF*	Tipo 68 Grupo principal (cepa 2 aislada en 09/2014)
	ATCC	VR-1825	Enterovirus D68. Cepa US/KY/14-18953
	ATCC	VR-1826	Enterovirus D68. Cepa Fermon
	BEI Resources	NR-49130	Enterovirus D68. US/MO/14-18949
	BEI Resources	NR-51998	Enterovirus D68. USA/2018-23089
	ATCC	VR-260	HF
	ZeptoMetrix	0810005CF	Macintyre
	ATCC	VR-733	F
Virus del herpes simple 1	ATCC	VR-1493*	KOS
	ATCC	VR-1 <i>77</i> 8*	ATCC-2011-1
	ATCC	VR-1789*	ATCC-2011-9
	NCPV	0104151v	17+
	NCTC	1806145v	P5A
	NCTC	1806147v	P6
	ZeptoMetrix	0810201CF*	Cepa aislada 20

Tabla 11 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Cepa/serotipo	Proveedor
	G	ATCC
	VHS-2. (Cepa: MS)	ZeptoMetrix
	ATCC-2011-2	ATCC
	131596	NCPV
Viene del hormos simulo 2	HG52	NCPV
Virus del herpes simple 2	Cepa aislada 1	ZeptoMetrix
	132349 ACV-res	NCPV
	Cepa aislada 11	Zeptometrix
	Cepa aislada 15	Zeptometrix
	Cepa aislada 20	Zeptometrix
	VHH-6A. (Cepa: GS)	ZeptoMetrix
	VHH-6B. (Cepa: Z29)	ZeptoMetrix
Virus del herpes humano	6B - cepa SF	ATCC
tipo 6	6B - cepa HST	NCPV
	Virus linfotrópico β humano, cepa GS	ATCC
	6A – cepa U1102	NCPV
	Serotipo 1. Cepa Harris	ZeptoMetrix
	Serotipo 3	ZeptoMetrix
	Serotipo 2. Cepa Williamson	ZeptoMetrix
	Serotipo 4	ZeptoMetrix
Parechovirus humano	Serotipo 5	ZeptoMetrix
	Serotipo 6	ZeptoMetrix
	tipo 3. Cepa US/MO- KC/2014/001	ATCC
	Parechovirus A3. Cepa US/MO-KC/2012/006	ATCC

Tabla 11 (continuación de la tabla de la página anterior)

Mlcrorganismo patógeno	Cepa/serotipo	Proveedor
	Ellen	ZeptoMetrix
	Oka	ATCC
	Cepa aislada A	ZeptoMetrix
	Cepa aislada B	ZeptoMetrix
Virus de la varicela-zóster	Сера 275	ZeptoMetrix
VII 03 de la Vallcela 203lei	Webster	ATCC
	Сера 82	ZeptoMetrix
	Cepa aislada D	ZeptoMetrix
	Сера 9939	ZeptoMetrix
	Cepa 1700	ZeptoMetrix
	Serotipo D, cepa WM629, tipo VNIV	ATCC
	H99	ATCC
	Cepa, CBS 132	ATCC
	Serotipo A cepa WM148, tipo VNI	ATCC
	M2092	ATCC
Cryptococcus neoformans	Serotipo AD cepa WM628, tipo VNIII	ATCC
	Serotipo A	ZeptoMetrix
	NIH9hi90	BEI Resources
	NIH306	BEI Resources
	Var grubiiYL99α	BEI Resources
	Serotipo B, cepa R272, tipo VGIIb	ATCC
	A6MR38	ATCC
	Serotipo B cepa WM179, tipo VGI	ATCC
Cryptococcus gattii	Serotipo B cepa WM161, tipo VGIII	ATCC
	Serotipo C cepa WM779, tipo VGIV	ATCC
	A1M R265	ATCC
	110 [CBS 883]	ATCC
	AIR265	BEI Resources
	AL 177	BEI Resources
	Alg166	DEI Resources

Todas las cepas de inclusividad analizadas como parte del estudio fueron detectadas por el panel, excepto seis cepas. Estas cepas se detallan en la tabla 12.

Tabla 12. Cepas de inclusividad no detectadas por el QIAstat-Dx ME Panel

Microganismo patógeno	Cepa/serotipo
Virus del herpes simple 1	ATCC-2011-1
Escherichia coli K1	NCDC Bi 7509-41 Serotipo O7:K1(L):NM
Escherichia coli K1	Z136 CTX-M-15
Enterovirus C	CV-A21. Cepa H06452 472
Enterovirus C	CV-A21. Cepa H06418 508
Streptococcus agalactiae	Serotipo III. Cepa de tipificación D136C(3) [3 Cole 106, CIP 82.45]

Exclusividad

El estudio de especificidad analítica se llevó a cabo mediante pruebas *in vitro* y un análisis informático para evaluar la posible reactividad cruzada y la exclusividad del QIAstat-Dx ME Panel. Se analizaron los microrganismos en el panel para evaluar la posibilidad de reactividad cruzada intrapanel y se analizaron los microrganismos fuera del panel para evaluar la reactividad cruzada con microrganismos no cubiertos por el contenido del panel.

Resultados del análisis informático

El resultado del análisis informático realizado para todos los diseños de cebador/sonda incluidos en el QIAstat-Dx Meningitis Encephalitis Panel apuntaban a 6 posibles reacciones cruzadas con dianas fuera del panel (enumeradas en la tabla 13)

Tabla 13. Posibles reacciones cruzadas determinadas por el análisis informático

Microrganismo fuera del panel	Señal en el panel
Streptococcus pseudopneumoniae*	S. pneumoniae
Listeria innocua*	L. monocytogenes
Haemophilus haemolyticus	H. influenzae
Cryptococcus amylolentus	
Cryptococcus depauperatus*	Cryptococcus neoformans/gatti
Cryptococcus wingfieldii	

^{*} El riesgo de reactividad cruzada del análisis informático no se confirmó mediante pruebas in vitro.

Todos los microrganismos de la tabla 13 se analizaron en el estudio de especificidad analítica in vitro.

Resultados del análisis in vitro

A fin de demostrar el rendimiento de especificidad analítica del QIAstat-Dx Meningitis Panel para los patógenos que podrían estar presentes en la muestra clínica pero que no están cubiertos por el contenido del panel, se analizó una selección de patógenos con posible reactividad cruzada (análisis fuera del panel). Además, la especificidad y la ausencia de reactividad cruzada con los patógenos que forman parte del QIAstat-Dx Meningitis Panel se ha evaluado en títulos altos (análisis en el panel).

Las muestras se prepararon añadiendo microrganismos que posiblemente pueden causar reactividad cruzada a una matriz de LCR artificial en 10⁵ TCID₅₀/ml en el caso de las dianas víricas y en 10⁶ UFC/ml en el de las dianas bacterianas y fúngicas, o la concentración más alta posible con base en la solución de partida del microrganismo.

En la tabla 14 se detallan todas las cepas sometidas a análisis de exclusividad. Para los patógenos señalados con * se utilizó ADN sintético cuantitativo o material inactivado.

Tabla 14: microrganismos patógenos sometidos a análisis de exclusividad

Microrganismo patógeno	Сера	Proveedor	ld. de catálogo
Escherichia coli K1	Cepa C5 [Bort]; O18ac:K1:H7	ATCC	700973
Haemophilus influenzae	Tipo e [cepa AMC 36-A-7]	ATCC	8142
Listeria monocytogenes	Tipo 4b. Cepa Li 2	ATCC	19115
Mycoplasma pneumoniae	M129	ZeptoMetrix	801579
Neisseria meningitidis	Serotipo Y. M-112 [BO-6]	ATCC	35561
Streptococcus pneumoniae	19F	ZeptoMetrix	801439
Streptococcus agalactiae	Z019	Zeptometrix	801545
Streptococcus pyogenes	Z472; Serotipo M1	Zeptometrix	804351
Enterovirus A	A6, especie A. Cepa Gdula	ATCC	VR-1801
Enterovirus B	Virus de Coxsackie B5	ZeptoMetrix	0810019CF
Enterovirus C	Virus de Coxsackie A17, especie C. Cepa G-12	ATCC	VR-1023
Enterovirus D	Enterovirus D68. Cepa US/MO/14-18947	ATCC	VR-1823

Tabla 14 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Сера	Proveedor	Id. de catálogo
Virus del herpes simple 1	Macintyre	ZeptoMetrix	0810005CF
Virus del herpes simple 2	VHS-2. (Cepa: MS)	ZeptoMetrix	0810006CF
Virus del herpes humano tipo 6	VHH-6B. (Cepa: Z29)	ZeptoMetrix	0810072CF
Parechovirus humano	Serotipo 3	ZeptoMetrix	08101 <i>47</i> CF
Virus de la varicela-zóster	Ellen	ZeptoMetrix	0810171CF
Cryptococcus neoformans	WM629 [CBS 10079]	ATCC	MYA-4567
Cryptococcus gattii	Serotipo B, cepa R272, tipo VGIIb	ATCC	MYA-4094
Adenovirus A12	Huie	ATCC	VR-863
Adenovirus C2	Adenoide 6 (NIAID 202-001-014)	ATCC	VR-846
Adenovirus D20	A.A	ATCC	VR-1090
Adenovirus E4	RI-67	ATCC	VR-1 <i>57</i> 2
Adenovirus F41	Tak	ZeptoMetrix	0810085CF
Poliomavirus BK	N/A	ATCC	VR-837
Coronavirus 229E	229E	ATCC	VR-740
Coronavirus NL63	NL63 (Ámsterdam I)	BEI Resources	NR-470
Coronavirus OC43	OC43	ATCC	VR-1558
Virus del dengue (tipo 2)*	Guinea C nueva	ZeptoMetrix	0810089CFHI
Virus de Epstein-Barr	B95-8	ZeptoMetrix	0810008CF
Virus de la hepatitis B (VHB)*	N/A	ZeptoMetrix	0810031C
Virus de la hepatitis C (VHC)*	N/A	ZeptoMetrix	0810032C
Virus del herpes humano tipo 7	SB	ZeptoMetrix	0810071CF
Virus del herpes humano tipo 8	N/A	ZeptoMetrix	0810104CF
Virus de la inmunodeficiencia humana*	ARN cuantitativo sintético del virus de la inmunodeficiencia humana 1 (VIH-1)	ATCC	VR-3245SD
Rinovirus humano A1b	2060	ATCC	VR-1559
Rinovirus humano A16	11757	ATCC	VR-283
Rinovirus humano B3	FEB	ATCC	VR-483
Rinovirus humano B83	Baylor 7 [V-190-001-021]	ATCC	VR-1193
Poliomavirus JC	MAD-4	ATCC	VR-1583

Tabla 14 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Сера	Proveedor	Id. de catálogo
Virus del sarampión	Edmonston	ATCC	VR-24
Virus de la parotiditis	Jones	ATCC	VR-1438
Virus del Nilo Occidental*	1986	ZeptoMetrix	VR-3274SD
Virus paragripal 2	Greer	ATCC	VR-92
Virus paragripal 4	N/A	ZeptoMetrix	0810060CF
Parvovirus B19	B19	ZeptoMetrix	0810064C
Virus respiratorio sincicial	A2	ATCC	VR-1540
Rotavirus	RRV (rotavirus Rhesus)	ZeptoMetrix	0810530CF
Virus de la rubéola	N/A	ZeptoMetrix	0810048CF
Virus de la encefalitis de San Luis*	Parton	ZeptoMetrix	0810080CFHI
Candida glabrata	CBS 138	ATCC	2001
Candida krusei	N/A	ATCC	14243
Candida lusitaniae	Z010	ZeptoMetrix	801603
Candida metapsilosis	MCO429	ATCC	96143
Candida orthopsilosis	MCO471	ATCC	96140
Candida viswanathii	PK 233 [NCYC 997, pK233]	ATCC	20336
Candida parapsilosis	CBS 604	ATCC	22019
Candida tropicalis	Vitek #8935	ATCC	750
Cryptococcus albidus	AmMS 228	ATCC	66030
Cryptococcus amylolentus	NRRY Y-7784	ATCC	56469
Cryptococcus laurentii	CBS 139	ATCC	18803
Cryptococcus uniguttulatus	AmMS 234	ATCC	66033
Cryptococcus adeliensis = Cryptococcus adeliae = Naganishia adeliensis	Cryptococcus adeliae	ATCC	201412
Cryptococcus flavescens = Papiliotrema flavescens	Cryptococcus laurentii var. flavescens (Saito) Lodder et Kreger-van Rij	ATCC	10668
Gripe A H1N1	A/Florida/3/2006	ATCC	VR-1893
Gripe A H1N1-2009	A/California/08/2009 (H1N1pdm)	ATCC	VR-1895

Tabla 14 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Сера	Proveedor	Id. de catálogo
Gripe A H3N2	A/Port Chalmers/1/73	ATCC	VR-810
Gripe B	B/Virginia/ATCC4/2009	ATCC	VR-1784
Cryptococcus wingfieldii = Tsuchiyaea wingfieldii	OTU 26	Collection Belga	CBS 7118
Cryptococcus depauperatus = Aspergillus depauperatus = Filobasidiella depauperata	K [ARSEF 2058, CBS 7842]	ATCC	64866
Filobasidium capsuligenum	ML-186	ATCC	22179
Naeglaria fowleri*	ADN genómico de Naegleria fowleri	ATCC	301 <i>74</i> D
Toxoplasma gondii	Haplogrupo 2	ATCC	50611
Aspergillus fumigatus	Z014	ZeptoMetrix	801716
Candida albicans	CBS 562	ATCC	18804
Candida dubliniensis	Z145	ZeptoMetrix	801915
Bacillus cereus	Z091	ZeptoMetrix	801823
Citrobacter freundii	[ATCC 13316, NCTC 9750]	ATCC	8090
Corynebacterium striatum	CDC F6683	ATCC	43751
Corynebacterium urealyticus	3 [cepa Garcia]	ATCC	43044
Cronobacter (Enterobacter) sakazakii	CDC 4562-70	ATCC	29544
Enterobacter aerogenes	Z052	ZeptoMetrix	801518
Enterobacter cloacae	CDC 442-68	ATCC	13047
Escherichia coli (diferente de K1)	2003-3055	ATCC	BAA-2212
Escherichia fergusonii	Z302	ZeptoMetrix	804113
Escherichia hermannii	CDC 980-72	ZeptoMetrix	804068
Escherichia vulneris	CDC 875-72	ATCC	33821
Haemophilus ducreyi	CF101	ATCC	33940
Haemophilus haemolyticus	NCTC 10659	ATCC	33390
Haemophilus parahaemolyticus	536 [NCTC 8479]	ATCC	10014

Tabla 14 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Сера	Proveedor	ld. de catálogo
Haemophilus parainfluenzae	NCTC 7857	ATCC	33392
Klebsiella pneumoniae	NCTC 9633 [NCDC 298-53, NCDC 410-68]	ATCC	13883
Listeria innocua	SLCC 3379	ATCC	33090
Listeria ivanovii	Li 1979	ATCC	19119
Morganella morganii	AM-15	ATCC	25830
Streptococcus salivarius	C699	ATCC	13419
Streptococcus sanguinis	DSS-10	ATCC	10556
Streptococcus pseudopneumoniae	CDC-SS-1757	ATCC	BAA-960
Mycoplasma genitalium	M30	ATCC	49895
Neisseria lactamica	NCDC A7515	ATCC	23970
Neisseria mucosa	AmMS 138	ATCC	49233
Neisseria sicca	AMC 14-D-1	ATCC	9913
Neisseria gonorrhoeae	Z017	ZeptoMetrix	801482
Pantoea agglomerans	Enterobacter agglomerans	ATCC	27155
Proprionibacterium acnes	NCTC 737	ATCC	6919
Proteus mirabilis	LRA 08 01 73 [API SA, DSM 6674]	ATCC	7002
Pseudomonas aeruginosa	PRD-10 [CIP 103467, NCIB 10421, PCI 812]	ATCC	15442
Saccharomyces cerevisiae	NRRL Y-567	ATCC	9763
Salmonella bongori	CIP 82.33	ATCC	43975
Salmonella enterica	CDC K-1891 [ATCC 25928]	ATCC	13076
Serratia marcescens	PCI 1107	ATCC	14756
Shigella boydii	CDC C-123	ATCC	12033
Shigella flexneri	Z046	ZeptoMetrix	801 <i>757</i>
Shigella sonnei	AMC 43-GG9	ATCC	9290
Staphylococcus aureus	FDA 209	ATCC	CRM-6538
Staphylococcus capitis	PRA 360 677	ATCC	35661

Tabla 14 (continuación de la tabla de la página anterior)

Microrganismo patógeno	Сера	Proveedor	Id. de catálogo
Staphylococcus epidermidis	FDA cepa PCI 1200	ATCC	12228
Staphylococcus haemolyticus	SM 131	ATCC	29970
Staphylococcus hominis	Z031	ZeptoMetrix	801727
Staphylococcus lugdunensis	LRA 260.05.79	ATCC	49576
Staphylococcus saprophyticus	NCTC 7292	ATCC	15305
Streptococcus anginosus	NCTC 10713	ATCC	33397
Streptococcus bovis	Z167	ZeptoMetrix	804015
Streptococcus dysgalactiae	Cepa de agrupación C74	ATCC	12388
Streptococcus intermedius	Z126	ZeptoMetrix	801895
Streptococcus oralis	Z307	ZeptoMetrix	804293
Streptococcus mitis (tigurinus)	Cepa aislada en la clínica	ZeptoMetrix	801695
Streptococcus mutans	LRA 28 02 81	ATCC	35668

Todos los microrganismos/virus analizados mostraron resultados negativos en las tres réplicas analizadas (no se detectaron señales positivas inesperadas), excepto en el caso de los microrganismos patógenos que se muestran en la tabla siguiente. Los microrganismos patógenos que presentan reactividad cruzada con el panel y la concentración más baja en la que se detecta reactividad cruzada se enumeran en la tabla 15.

Tabla 15. Muestras que presentaron reactividad cruzada con el panel

Diana de QIAstat-Dx Meningitis	Microrganismo con posible reactividad cruzada†	Concentración de reactividad cruzada declarada en las instrucciones de uso
Mycoplasma pneumoniae	Propionibacterium acnes*	≥1,00E+04 UFC/ml
Mycoplasma pneumoniae	Mycoplasma genitalium	≥1,00E+06 UFC/ml
Haemophilus influenzae	Haemophilus haemolyticus	≥1,00E+03 UFC/ml
Cryptococcus neoformans/gattii	Cryptococcus wingfieldii = Tsuchiyaea wingfieldii	≥1,00E+01 UFC/ml
Cryptococcus neoformans/gattii	Cryptococcus flavescens = Papiliotrema flavescens	≥4,00E+03 UFC/ml
Cryptococcus neoformans/gattii	Cryptococcus amylolentus	≥1,00E+01 UFC/ml

^{*} No se predijo que Propionibacterium acnes presentara reacción cruzada con Mycoplasma pneumoniae.

[†] La reacción cruzada predicha en el análisis informático para *Listeria innocua* con el ensayo de *Listeria monocytogenes* y para Cryptococcus depauperatus con el ensayo de *Cryptococcus neoformans/gattii* no se confirmó in vitro.

Infecciones concomitantes

Se analizaron muestras combinadas que contenían una mezcla de dos dianas distintas añadidas en concentraciones altas y bajas a LCR artificial. Se incluyeron dianas bacterianas, víricas y de levaduras, y los microrganismos detectados en la misma cámara de reacción se eligieron para la preparación y el análisis de las muestras. La selección y la combinaciones de las dianas se basaron en la relevancia clínica. Se analizaron tres réplicas por muestra.

En la tabla 16 se muestra un resumen de las mezclas de coinfección finales a través de las cuales el alto porcentaje de analito (High Percentage Analyte, HPA) no inhibe el bajo porcentaje de analito (Low Percentage Analyte, LPA).

Tabla 16. Mezclas de coinfección en las que la concentración del HPA no inhibe el LPA

LPA			НРА*		
Mlcrorganismo patógeno	Concentración	Unidades	Microrganismo patógeno	Concentración	Unidades
Escherichia coli K1	3,30E+02	UFC/ml	Haemophilus influenzae	1,00E+06	UFC/ml
Haemophilus influenzae	9,48E+02	UFC/ml	Escherichia coli K1	1,00E+06	UFC/ml
Mycoplasma pneumoniae	2,84E+02	UFC/ml	VHS-1	1,00E+05	TCID ₅₀ /ml
VHS-1	2,67E+02	TCID ₅₀ /ml	Mycoplasma pneumoniae	1,00E+03	UFC/ml
Haemophilus influenzae	9,48E+02	UFC/ml	VHS-2	1,00E+02	TCID ₅₀ /ml
VHS-2	3,78E+01	TCID ₅₀ /ml	Haemophilus influenzae	1,00E+06	UFC/ml
VHH-6	9,39E+04	UFC/ml	Listeria monocytogenes	1,00E+06	UFC/ml
Listeria monocytogenes	5,58E+03	UFC/ml	VHH-6	1,00E+05	cp/ml
VHS-1†	2,67E+02	TCID ₅₀ /ml	Streptococcus pneumoniae	1,00E+02	UFC/ml

Tabla 16. (continúa de la página anterior)

LPA			HPA*		
Microrganismo patógeno	Concentración	Unidades	Microrganismo patógeno	Concentración	Unidades
Streptococcus pneumoniae	6,78E+02	UFC/ml	VHS-1	1,00E+05	TCID ₅₀ /ml
Haemophilus influenzae	9,48E+02	UFC/ml	Streptococcus pneumoniae	1,00E+06	UFC/ml
Streptococcus pneumoniae	6,78E+02	UFC/ml	Haemophilus influenzae	1,00E+06	UFC/ml
Listeria monocytogenes	5,58E+03	UFC/ml	Streptococcus pneumoniae	1,00E+06	UFC/ml
Streptococcus pneumoniae	6,78E+02	UFC/ml	Listeria monocytogenes	1,00E+06	UFC/ml
Cryptococcus neoformans	6,63E+03	UFC/ml	Streptococcus pneumoniae	1,00E+06	UFC/ml
Streptococcus pneumoniae	6,78E+02	UFC/ml	Cryptococcus neoformans	1,00E+05	UFC/ml
Neisseria meningitidis	3,99E+01	UFC/ml	Haemophilus influenzae	1,00E+06	UFC/ml
Haemophilus influenzae	9,48E+02	UFC/ml	Neisseria meningitidis	1,00E+06	UFC/ml
VZV	1,62E+02	UFC/ml	Neisseria meningitidis	1,00E+06	UFC/ml
Neisseria meningitidis	3,99E+01	UFC/ml	VZV	1,00E+05	UFC/ml
Enterovirus	4,80E+02	TCID ₅₀ /ml	Streptococcus pyogenes	1,00E+06	UFC/ml
Streptococcus pyogenes	1,71E+03	UFC/ml	Enterovirus	1,00E+05	TCID ₅₀ /ml
Parechovirus	1,01E+02	UFC/ml	Enterovirus	1,00E+05	TCID ₅₀ /ml
Enterovirus	4,80E+02	UFC/ml	Parechovirus	1,00E+05	UFC/ml
VHH-6	9,39E+04	cp/ml	VHS-1	1,00E+05	TCID ₅₀ /ml
VHS-1	2,67E+02	TCID ₅₀ /ml	VHH-6	1,00E+05	cp/ml
Streptococcus agalactiae	5,25E+03	UFC/ml	VHS-2	1,00E+05	TCID ₅₀ /ml

^{*} Concentración más baja que no inhibe el LPA

[†] La concentración de HPA (*S. pneumoniae*) que no inhibe el LPA (VHS1) se identificó como 1,00E+02 UFC/ml. Sin embargo, esta concentración se encuentra por debajo del LoD determinado en el ensayo para *S. pneumoniae* (7,14E+02 UFC/ml) y se observó una caída del HPA. (Nota: se demostró una detección comparable al analizar *S. pneumoniae* a 6,78E+02 UFC/ml y el VHS-1 se analizó a 1,00E+05 TCID₅₀/ml. Por tanto, parece que unas concentraciones elevadas de VHS-1 no interfieren con la detección de *S. pneumoniae*, pero *S. pneumoniae* sí interfiere con la detección del VHS-1).

Sustancias interferentes

Se evaluó el efecto de las posibles sustancias interferentes en la detectabilidad de los microrganismos del QIAstat-Dx ME Panel. Las sustancias analizadas en el estudio (31) incluían tanto sustancias endógenas como exógenas que suelen encontrarse o introducirse en las muestras de LCR durante la recogida de la muestra.

Se analizaron todos los microrganismos diana del QIAstat-Dx ME Panel en 3 x LoD en una matriz de LCR artificial y el análisis se realizó por triplicado. Las posibles sustancias interferentes se añadieron a las muestras en un nivel que se estimó superior a la concentración de la sustancia que probablemente se encontraría en una muestra de LCR.

Tabla 17. Resumen de sustancias interferentes analizadas

Nombre	Concentración analizada	Interferencia
Sustancias endógenas		
Sangre humana	10 % (v/v)	No
ADNg	20 μg/ml	Sí
ADNg	2 μg/ml	No
D(+)glucosa	10 mg/ml	No
L-lactato (Na)	2,2 mg/ml	No
Inmunoglobulina G (humana)	20 mg/ml	No
Albúmina (humana)	30 mg/ml	No
Células mononucleares de sangre periférica	10 000 células/µl	No
Sustancias exógenas		
Clorhexidina	0,4 % (p/v)	No
Etanol	7 % (v/v)	No
Lejía	1 % (v/v)	Sí
Lejía	0,1 % (v/v)	Sí
Lejía	0,01 % (v/v)	No
Aciclovir	69 µg/ml	No
Anfotericina B	5,1 µg/ml	No

Tabla 17 (continuación de la tabla de la página anterior)

Nombre	Concentración analizada	Interferente	
Ampicilina	210 μg/ml	No	
Ceftriaxona (LCRa)	840 μg/ml	No	
Ceftriaxona (PBS)	840 μg/ml	No	
Cefotaxima	645 µg/ml	No	
Ganciclovir	25 μg/ml	No	
Gentamicina	30 μg/ml	No	
Meropenem	339 µg/ml	No	
Vancomicina	180 µg/ml	No	
Voriconazol	11 µg/ml	No	
Oseltamivir	0,399 µg/ml	No	
Microrganismos no diana			
Virus de Epstein-Barr	1E+05 cp/ml	No	
Gripe A H1N1-2009	1E+05 CEID 50/ml	No	
Cutibacterium acnes	1E+06 UFC/ml	No	
Staphylococcus epidermidis	1E+06 UFC/ml	No	
Escherichia coli (diferente de K1)	1E+06 UFC/ml	No	
Staphylococcus aureus	1E+06 UFC/ml	No	
Virus del sarampión	1E+05 TCID ₅₀ /ml	No	

Nota: También se analizó la posible interferencia de todos los disolventes o tampones utilizados en la preparación de sustancias interferentes, y no se detectó ninguna.

Todas las posibles sustancias interferentes endógenas y exógenas se han evaluado y se ha confirmado que no interfieren con ninguno de los ensayos diana del panel a las concentraciones posiblemente presentes en las muestras clínicas. Esto se cumple excepto para la lejía y el ADNg, para los que se observaron interferencias y, por tanto, se ha determinado la concentración más baja de las sustancias que causa interferencias.

Contaminación por arrastre

Se efectuó un estudio de contaminación por arrastre para evaluar la posible aparición de contaminación cruzada entre series consecutivas al usar el QlAstat-Dx Meningitis Encephalitis Panel en el QlAstat-Dx Analyzer 1.0. Se analizaron muestras patógenas de LCR, alternando muestras positivas altas (10⁵-10⁶ microrganismo/ml) y muestras negativas, en dos instrumentos QlAstat-Dx Analyzer 1.0. No se observó arrastre entre las muestras en el QlAstat-Dx Meningitis/Encephalitis panel, lo que mostró que el diseño del sistema y las prácticas recomendadas de manipulación y análisis de las muestras son eficaces a la hora de evitar resultados inesperados a causa de arrastre o contaminación cruzada entre las muestras.

Repetibilidad y reproducibilidad

Para evaluar la reproducibilidad se siguió un esquema multicéntrico consistente en el análisis de muestras negativas y positivas en dos centros de estudio diferentes con distintas variables del flujo de trabajo, como los centros, los días, los instrumentos, los operadores y los lotes de cartucho, que podrían repercutir en la precisión del sistema. Las muestras negativas consistieron en LCR artificial. Las muestras positivas combinadas consistieron en LCR artificial enriquecido con un panel representativo de patógenos que cubría todos los tipos detectados por el QIAstat-Dx ME Panel (es decir, virus ADN, virus ARN, bacterias grampositivas, bacterias gramnegativas y levaduras) en el límite de detección (1 x LoD) y en una concentración de 3 x LoD. Por cada centro, se realizaron análisis en 5 días no consecutivos por mezcla con 9 réplicas por día por mezcla (lo que significa un total de 45 réplicas por diana, concentración y centro), un mínimo de 9 QIAstat-Dx Analyzers diferentes por centro y como mínimo 3 operadores en cada día de análisis.

El análisis de la reproducibilidad estaba diseñado para evaluar las variables críticas que podrían repercutir en el rendimiento del QIAstat-Dx ME Panel en el contexto de su uso rutinario y previsto.

En el estudio de repetibilidad se analizó el mismo panel de muestras de acuerdo con un esquema en un solo centro. El análisis de la repetibilidad estaba diseñado para evaluar la precisión de un QIAstat-Dx ME Panel Cartridge en condiciones similares (intralaboratorio). El estudio de repetibilidad se evaluó con las mismas muestras que se utilizaron para las pruebas de reproducibilidad en el centro 1.

Tabla 18. Proporción de resultados de repetibilidad correctos

Variable(s) de agrupamiento		Prop	orción	Límite de confianza del 95 % bilateral	
Cryptococcus	1 × LoD	60/60	100,00 %	94,04 %	100,00 %
neoformans/ gattii	3 × LoD	61/61	100,00 %	94,13 %	100,00 %
Enterovirus	1 × LoD	60/60	100,00 %	94,04 %	100,00 %
	3 × LoD	61/61	100,00 %	94,13 %	100,00 %
Listeria monocytogenes	1 × LoD	60/60	100,00 %	94,04 %	100,00 %
	3 × LoD	61/61	100,00 %	94,13 %	100,00 %
Mycoplasma pneumoniae	1 × LoD	60/60	100,00 %	94,04 %	100,00 %
	3 × LoD	61/61	100,00 %	94,13 %	100,00 %
Negativo	Negativo	60/60	100,00 %	94,04 %	100,00 %
Streptococcus agalactiae	1 × LoD	60/60	100,00 %	94,04 %	100,00 %
	3 × LoD	61/61	100,00 %	94,13 %	100,00 %
Virus de la varicela-zóster	1 × LoD	51/60	85,00 %	73,43 %	92,90 %
	3 × LoD	60/61	98,36 %	91,20 %	99.96 %

Tabla 19. Proporción de resultados de reproducibilidad correctos

Variable(s) de agrupamiento		Proporción		Límite de confianza del 95 % bilateral		
Diana	Concentración	Centro	Fracción	Porcentaje	Inferior	Superior
Cryptococcus neoformans/ gattii		1	45/45	100,00 %	92,13 %	100,00 %
	1 × LoD	2	45/45	100,00 %	92,13 %	100,00 %
		Todos	90/90	100,00 %	95,98 %	100,00 %
		1	45/45	100,00 %	92,13 %	100,00 %
	3 × LoD	2	45/45	100,00 %	92,13 %	100,00 %
		Todos	90/90	100,00 %	95,98 %	100,00 %
Enterovirus		1	45/45	100,00 %	92,13 %	100,00 %
	1 × LoD	2	45/45	100,00 %	92,13 %	100,00 %
		Todos	90/90	100,00 %	95,98 %	100,00 %
		1	45/45	100,00 %	92,13 %	100,00 %
	3 × LoD	2	45/45	100,00 %	92,13 %	100,00 %
		Todos	90/90	100,00 %	95,98 %	100,00 %

Continúa en la página siguiente

Tabla 19 (continuación de la tabla de la página anterior)

Variable(s) de agrupamiento		Proporción			Límite de confianza del 95 % bilateral	
Diana	Concentración	Centro	Fracción	Porcentaje	Inferior	Superior
	1 × LoD	1	45/45	100,00 %	92,13 %	100,00 %
		2	44/45	97,78 %	88,23 %	99,94 %
listoria		Todos	89/90	98,89 %	93,96 %	99,97 %
Listeria monocytogenes		1	45/45	100,00 %	92,13 %	100,00 %
	3 × LoD	2	45/45	100,00 %	92,13 %	100,00 %
		Todos	90/90	100,00 %	95,98 %	100,00 %
		1	45/45	100,00 %	92,13 %	100,00 %
	1 × LoD	2	45/45	100,00 %	92,13 %	100,00 %
		Todos	90/90	100,00 %	95,98 %	100,00 %
Mycoplasma pneumoniae		1	45/45	100,00 %	92,13 %	100,00 %
pneomoniae	3 × LoD	2	45/45	100,00 %	92,13 %	100,00 %
		Todos	90/90	100,00 %	95,98 %	100,00 %
Negativo	Negativo	1	44/44	100,00 %	91,96 %	100,00 %
		2	45/45	100,00 %	92,13 %	100,00 %
		Todos	89/89	100,00 %	95,94 %	100,00 %
Streptococcus agalactiae		1	45/45	100,00 %	92,13 %	100,00 %
	1 × LoD	2	45/45	100,00 %	92,13 %	100,00 %
		Todos	90/90	100,00 %	95,98 %	100,00 %
		1	45/45	100,00 %	92,13 %	100,00 %
	3 × LoD	2	45/45	100,00 %	92,13 %	100,00 %
		Todos	90/90	100,00 %	95,98 %	100,00 %
Virus de la varicela-zóster	1 × LoD	1	39/45	86,67 %	73,21 %	94,95 %
		2	38/45	84,44 %	70,54 %	93,51 %
		Todos	77/90	85,56 %	76,57 %	92,08 %
	3 × LoD	1	44/45	97,78 %	88,23 %	99,94 %
		2	45/45	100,00 %	92,13 %	100,00 %
		Todos	89/90	98,89 %	93,96 %	99,97 %

En conclusión, se cumplen los requisitos de reproducibilidad y repetibilidad de las pruebas realizadas con el QlAstat-Dx Meningitis Panel.

Apéndice A: Instalación del archivo de definición de ensayos

El archivo de definición de ensayos del QIAstat-Dx ME Panel debe instalarse en el QIAstat-Dx Analyzer 1.0 antes de realizar el análisis con los QIAstat-Dx ME Panel Cartridges.

Nota: Siempre que aparezca una nueva versión del ensayo del QIAstat-Dx ME Panel, debe instalarse el nuevo archivo de definición de ensayos del QIAstat-Dx ME Panel antes de realizar el análisis.

Nota: Los archivos de definición de ensayos están disponibles en www.qiagen.com. El archivo definición de ensayos (tipo de archivo .asy) se debe guardar en una unidad USB antes de instalarlo en el QIAstat-Dx Analyzer 1.0. La unidad USB debe formatearse con un sistema de archivos FAT32.

Para importar ensayos al QIAstat-Dx Analyzer 1.0, siga estos pasos:

- 1. Introduzca el dispositivo de almacenamiento USB que contiene el archivo de definición de ensayos en uno de los puertos USB del QIAstat-Dx Analyzer 1.0.
- Pulse el botón Options (Opciones) y, a continuación, el botón Assay Management (Administración de ensayos). Aparecerá la pantalla Assay Management (Administración de ensayos) en la zona de contenido de la pantalla (figura 25).

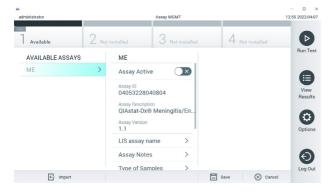


Figura 25. Pantalla Assay Management (Administración de ensayos).

- 3. Pulse el icono Import (Importar) en la parte inferior izquierda de la pantalla.
- 4. Seleccione el archivo correspondiente al ensayo que desea importar desde la unidad USB.
- 5. Aparecerá un cuadro de diálogo para confirmar la carga del archivo.
- Si se instaló una versión anterior del QIAstat-Dx ME Panel, aparecerá un cuadro de diálogo para sustituir la versión actual por la nueva. Pulse Yes (Sí) para confirmar la acción.
- 7. El ensayo quedará activo al pulsar el botón Assay Active (Ensayo activo) (figura 26).

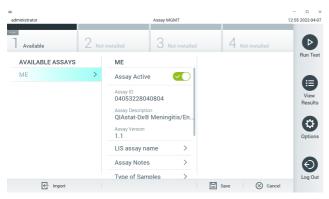


Figura 26. Activación del ensayo.

8. Asigne el ensayo activo al usuario pulsando el botón Options (Opciones) y, a continuación, el botón User Management (Administración de usuarios). Seleccione el usuario que debe tener permiso para realizar el ensayo. A continuación, seleccione Assign Assays (Asignar ensayos) en **User Options** (Opciones del usuario). Active el ensayo y pulse el botón Save (Guardar) (figura 27).

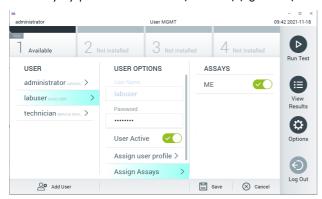


Figura 27. Asignación del ensayo activo.

Apéndice B: Glosario

Curva de amplificación: representación gráfica de los datos de amplificación de la real-time RT-PCR múltiple.

Módulo analítico (Analytical Module, AM): módulo de hardware principal del QIAstat-Dx Analyzer 1.0 que se encarga de efectuar análisis en los QIAstat-Dx Meningitis/Encephalitis Panel Cartridges. Está controlado por el módulo operativo. Pueden conectarse varios módulos analíticos a un solo módulo operativo.

QlAstat-Dx Analyzer 1.0: el QlAstat-Dx Analyzer 1.0 está compuesto por un módulo operativo y un módulo analítico. El módulo operativo incluye elementos que proporcionan conectividad al módulo analítico y permite al usuario interactuar con el QlAstat-Dx Analyzer 1.0. El módulo analítico contiene el hardware y el software para las pruebas y el análisis de las muestras.

QIAstat-Dx ME Panel Cartridge: dispositivo de plástico desechable independiente con todos los reactivos precargados necesarios para realizar ensayos moleculares completos totalmente automatizados para detectar microrganismos patógenos de la meningitis/encefalitis.

IFU: instrucciones de uso

Puerto principal: en el QIAstat-Dx ME Panel Cartridge, entrada para muestras líquidas en medio de transporte.

Ácidos nucleicos: biopolímeros o pequeñas biomoléculas compuestas por nucleótidos, que son monómeros formados por tres componentes: un monosacárido de cinco carbonos, un grupo fosfato y una base nitrogenada.

Módulo operativo (Operational Module, OM): hardware del QlAstat-Dx Analyzer 1.0 específico que proporciona al usuario una interfaz para uno, dos, tres o cuatro módulos analíticos (Analytical Module, AM).

PCR: reacción en cadena de la polimerasa.

RT: transcripción inversa.

Usuario: persona que utiliza el QIAstat-Dx Analyzer 1.0/QIAstat-Dx ME Panel Cartridge del modo previsto.

Apéndice C: Exclusión de garantías

SALVO LO DISPUESTO EN LOS TÉRMINOS Y CONDICIONES DE VENTA DE QIAGEN PARA EL QIAstat-Dx ME Panel Cartridge, QIAGEN NO ASUME NINGUNA RESPONSABILIDAD Y RECHAZA CUALQUIER GARANTÍA EXPLÍCITA O IMPLÍCITA CON RESPECTO AL USO DEL QIAstat-Dx ME Panel Cartridge, INCLUIDAS LAS RESPONSABILIDADES O GARANTÍAS RELACIONADAS CON LA COMERCIABILIDAD, LA IDONEIDAD PARA UN FIN DETERMINADO O LA VULNERACIÓN DE CUALQUIER PATENTE, DERECHO DE AUTOR O CUALQUIER DERECHO DE PROPIEDAD INTELECTUAL EN CUALQUIER PARTE DEL MUNDO.

Referencias

- 1. Meningitis and Encephalitis Fact Sheet. https://www.ninds.nih.gov/disorders/patient-caregiver-education/fact-sheets/meningitis-and-encephalitis-fact-sheet
- 2. Meningitis. https://www.cdc.gov/meningitis/index.html

Símbolos

En la tabla siguiente, se describen los símbolos que pueden aparecer en el etiquetado o en este documento.

∑ / <n></n>	Contiene suficientes reactivos para <n> reacciones</n>
Σ	Fecha de caducidad
IVD	Producto sanitario para diagnóstico in vitro
C€	Marcado CE de Conformidad Europea
REF	Número de catálogo
LOT	Número de lote
MAT	Número de material (es decir, etiquetado de los componentes)
Rn	"R" significa revisión del manual de uso y "n" es el número de revisión
*	Limitación de temperatura
***	Fabricante
	Consultar las instrucciones de uso
\triangle	Precaución
SN	Número de serie

2	No reutilizar
类	Mantener alejado de la luz solar
8	No utilizar si el envase está dañado
GTIN	Número mundial de artículo comercial
&	Inflamable, riesgo de incendio
	Corrosivo, riesgo de quemadura química
&	Riesgo para la salud, riesgo de sensibilización, carcinogénesis
<u></u>	Riesgo de daño

Historial de revisiones de las instrucciones de uso (manual de uso)

Fecha	Cambios
Revisión 1 Enero 2022	Versión inicial.
Revisión 2 Abril de 2022	Actualización de las imágenes para reflejar la versión 1.1 del software ADF Actualización de la sección Rendimiento clínico.

Acuerdo de licencia limitada para el QIAstat-Dx ME Panel

La utilización de este producto implica por parte de cualquier comprador o usuario del producto la aceptación de los siguientes términos:

- El producto debe utilizarse exclusivamente de acuerdo con los protocolos proporcionados con el producto y este manual de uso, así como con los componentes contenidos en el kit. QIAGEN no ofrece licencia alguna bajo ninguna de sus propiedades intelectuales para utilizar o incorporar los componentes suministrados en este kit con componentes no incluidos en el mismo, excepto según se describe en los protocolos proporcionados con el producto, este manual de uso y otros protocolos disponibles en www.qiagen.com. Algunos de estos protocolos adicionales han sido proporcionados por usuarios de QIAGEN para usuarios de QIAGEN. QIAGEN no ha probado ni optimizado estos protocolos en profundidad. Por ello, QIAGEN no los garantiza ni asegura que no infrinjan los derechos
- Aparte de las licencias expresamente especificadas, QIAGEN no garantiza que este kit y/o su uso no infrinjan los derechos de terceros.
- Este kit y sus componentes tienen licencia para un solo uso y no se pueden reutilizar, reacondicionar ni revender.
- QIAGEN renuncia específicamente a toda responsabilidad respecto a cualquier otra licencia, explícita o implícita, distinta de las licencias expresamente especificadas.
- El comprador y el usuario del kit aceptan no llevar a cabo ni permitir que otros lleven a cabo medidas que puedan conducir a acciones prohibidas en las especificaciones anteriores o que puedan facilitarlas. QIAGEN se reserva el derecho de emprender acciones legales ante cualquier tribunal para el cumplimiento de las prohibiciones especificadas en este Acuerdo de licencia limitada y recuperará todos los gastos derivados de la investigación y de los gastos judiciales, incluidas las costas procesales, en cualquier acción emprendida para hacer cumplir este Acuerdo de licencia limitada o cualquier otro derecho de propiedad intelectual en relación con este kit y/o con sus componentes.

Para obtener los términos de licencia actualizados, visite www.aigaen.com.

Marcas comerciales: QIAGEN®, Sample to Insight®, QIAstat-Dx®, DiagCORE® (QIAGEN Group); AirClean (AirClean Systems, Inc.); Bel-Art Scienceware® (Bel-Art Products); Clinical and Laboratory Standards Institute® (Clinical Laboratory and Standards Institute, Inc.). No debe considerarse que los nombres registrados, marcas comerciales, etc., que se utilizan en este documento no están protegidos por la ley, aunque no se indique específicamente.

HB-3002-003 R2 04/2022 © 2022 QIAGEN. Todos los derechos reservados.

