Manual del kit therascreen[®] BRAF RGQ PCR

Versión 2

IVD

Para uso de diagnóstico in vitro

Para uso con equipos Rotor-Gene® Q MDx

CE

870211

QIAGEN GmbH, QIAGEN Strasse 1, 40724 Hilden,

ALEMANIA

Sample & Assay Technologies

QIAGEN: tecnologías para la preparación de muestras y ensayos de biología molecular

QIAGEN es el proveedor líder de tecnologías innovadoras para la preparación de muestras y ensayos de biología molecular que permiten el aislamiento y la detección del contenido de cualquier muestra biológica. Nuestros productos y servicios de vanguardia y máxima calidad garantizan el éxito, desde la muestra hasta el resultado.

QIAGEN define los estándares en los siguientes campos:

- Purificación de ADN, ARN y proteínas
- Ensayos de ácidos nucleicos y proteínas
- Investigación con microARN y ARNi
- Automatización de tecnologías de preparación de muestras y ensayos de biología molecular

Nuestra misión es ayudarle a superar sus retos y a alcanzar un éxito excepcional. Para obtener más información, visite <u>www.qiagen.com</u>.

Contenido

Uso previsto	5
Resumen y explicación	5
Principio del procedimiento	6
Ensayos	7
Controles	8
Materiales suministrados	9
Contenido del kit	9
Materiales requeridos pero no suministrados	10
Advertencias y precauciones	11
Información de seguridad	11
Precauciones generales	12
Almacenamiento y manipulación de reactivos	12
Manipulación y almacenamiento de muestras	13
Procedimiento	14
Extracción y preparación del ADN	14
Protocolos:	
Valoración de las muestras	15
Detección de mutaciones de BRAF	27
Interpretación de los resultados (Automatizada)	39
Guía de resolución de problemas	41
Indicadores del software therascreen BRAF Assay Package	42
Control de calidad	51
Limitaciones	51
Características de rendimiento	52
Límite de blanco (LOB), intervalo de funcionamiento y valores de corte	52
Exactitud: Comparación con el método de referencia analítico	53
Impacto del ADN introducido sobre los valores de ΔC_T	53
Reactividad cruzada	54
Valores del límite de detección (LOD)	55

Efecto de la melanina en el rendimiento del kit	56
Repetibilidad	57
Reproducibilidad	57
Símbolos	59
Apéndice I: protocolo manual del kit therascreen BRAF RGQ PCR	60
Información general	60
Protocolo:	
Creación de un perfil de temperatura	60
Procedimiento (manual)	72
Protocolos:	
Valoración de las muestras (manual)	72
Detección de mutaciones de BRAF (manual)	73
Configuración de therascreen BRAF PCR RGQ	74
Interpretación de los resultados (manual)	79
Configuración del análisis del software	79
Análisis de los datos de valoración de las muestras	80
Análisis de los datos de la detección de mutaciones del gen BRAF	81
Apéndice II: instalación del software therascreen BRAF Assay Package	89
Procedimiento (descarga)	89
Procedimiento (CD)	89
Información de contacto	92
Información para pedidos	93

Uso previsto

El kit *therascreen* BRAF RGQ PCR es una prueba de diagnóstico in vitro diseñada para la detección de las cinco mutaciones somáticas encontradas en el gen BRAF con el fin de proporcionar una valoración cualitativa del estado de las mutaciones. El ADN será extraído de tejido tumoral fijado en formalina e impregnado en parafina (FFPE) y se analizará mediante una reacción en cadena de la polimerasa (PCR) en tiempo real en los equipos Rotor-Gene Q MDx. Los resultados del kit *therascreen* BRAF RGQ PCR tienen como finalidad ayudar al personal médico a la identificación de pacientes con cáncer que puedan beneficiarse de las terapias dirigidas a BRAF, como vemurafenib.

Mutación	Cambio de base	ID COSMIC
V600E	GTG>GAG	476
V600E compleja	GTG>GAA	475
V600D	GTG>GAT	473
V600K	GTG>AAG	474
V600R	GTG>AGG	477

Tabla 1. Lista de mutaciones e identificadores COSMIC*

* Se utilizan los identificadores (ID) COSMIC del catálogo de mutaciones somáticas del cáncer (Catalog of Somatic Mutations in Cancer): <u>www.sanger.ac.uk/genetics/CGP/cosmic</u>.

Resumen y explicación

El kit *therascreen* BRAF RGQ PCR es un equipo listo para su uso que se ha diseñado para la detección de cinco mutaciones somáticas en el gen BRAF mediante una reacción en cadena de la polimerasa (RT PCR) en tiempo real en el equipo Rotor-Gene Q MDx.

Gracias a las tecnologías ARMS[®] (amplificación refractaria de sistemas de mutaciones) y Scorpions[®], el kit *therascreen* BRAF RGQ PCR permite la detección de las siguientes mutaciones en el codón 600 del oncogén BRAF en ADN genómico nativo.

- V600E
- V600E compleja (V600Ec)
- V600D
- V600K
- V600R

Los métodos que se utilizan en este kit son altamente selectivos y, en función del volumen total de ADN presente, permiten detectar un bajo porcentaje de mutaciones en ADN genómico nativo. Los límites de selectividad y detección son superiores a los de otras tecnologías como la de secuenciación mediante terminadores fluorescentes.

Principio del procedimiento

El kit *therascreen* BRAF RGQ PCR combina las tecnologías ARMS y Scorpions para detectar mutaciones de PCR en tiempo real.

ARMS

La tecnología ARMS permite llevar a cabo una amplificación específica de los alelos o las mutaciones. La enzima *Taq* ADN polimerasa (*Taq*) resulta eficaz para diferenciar entre una coincidencia y un error de coincidencia en el extremo 3' de un primer o primer de PCR. Algunas secuencias mutadas se amplifican de forma selectiva, incluso en muestras cuya mayoría de secuencias no presentan la mutación, por ejemplo: Cuando la coincidencia con el primer es completa, la amplificación se produce con total eficacia. Cuando no hay coincidencia con la base 3', únicamente tiene lugar una amplificación de fondo de nivel bajo.

Scorpions

La detección de la amplificación se realiza mediante la tecnología Scorpions. Scorpions es una técnica de moléculas bifuncionales que contienen un primer de PCR unido covalentemente a una sonda marcada con fluorescencia. El fluoróforo de esta sonda se asocia a un quencher o silenciador, también incorporado en la sonda, lo que reduce la fluorescencia. Durante la reacción de la PCR, cuando la sonda se une al amplicón, se separan el fluoróforo y el silenciador. El resultado es un aumento medible de la fluorescencia en el tubo de reacción.

Formato del kit

El kit therascreen BRAF RGQ PCR se suministra con cinco ensayos:

- Un ensayo de control (mezcla de reacción para control; CTRL)
- Cuatro ensayos de mutación (mezclas de reacción de mutación; V600E/Ec, V600D, V600K y V600R)

El ensayo V600E/Ec detecta la presencia de las mutaciones V600E y V600Ec, pero no distingue entre ellas.

Todas las mezclas de reacción son dobles y contienen reactivos para la detección de dianas marcadas con FAM[™] y un control interno marcado con HEX[™]. Este ensayo de control interno controla la existencia de inhibidores que puedan conducir a resultados de falsos negativos.

Ensayos

El kit *therascreen* BRAF RGQ PCR incluye un procedimiento de dos pasos. En el primer paso, el ensayo de control se realiza para evaluar el ADN total amplificable de BRAF de una muestra. En el segundo paso, tanto la mutación como los ensayos de control se realizan para determinar la presencia o ausencia de ADN mutante.

Ensayo de control

El ensayo de control, marcado con FAM, sirve para valorar el ADN total amplificable de BRAF de la muestra. El ensayo de control amplifica una región del exón 3 del gen BRAF. Los primers y la sonda Scorpions están diseñados para realizar la amplificación independientemente de los polimorfismos conocidos del gen BRAF.

Ensayos de mutación

Cada ensayo de mutación contiene una sonda Scorpions marcada con FAM y un primer ARMS para discriminar entre el ADN nativo y el ADN mutante específico.

Controles

Nota: todas las series experimentales deben utilizar controles positivos y negativos.

Control positivo

Cada serie debe contener un control positivo en los tubos del 1 al 5. El kit *therascreen* BRAF RGQ PCR contiene control positivo (PC) de BRAF para utilizarlo como molde en la reacción de control positivo. Se evaluarán los resultados de control positivo para garantizar que el kit funciona según los criterios de aceptación indicados.

Control negativo

Cada serie debe contener un control negativo ("control sin molde") en los tubos del 9 al 13. El kit *therascreen* BRAF RGQ PCR contiene agua para el control sin molde (NTC), que se utiliza como "molde" en el control sin molde. El control sin molde se utiliza para evaluar las posibles contaminaciones durante la configuración de la serie y para evaluar el rendimiento de la reacción de control interna.

Evaluación de la reacción de control interna

Cada mezcla de reacción contiene un control interno, además de la reacción objetivo. Un error indica que pueden existir inhibidores que podrían derivar en un resultado inexacto o bien que se ha producido un error de configuración del usuario para ese tubo. Si el error del control interno se debe a una inhibición de PCR, diluir la muestra podría reducir el efecto de los inhibidores, pero debe tenerse en cuenta que esto también diluiría el ADN objetivo. El kit incluye un tubo de agua para la dilución de la muestra (Dil.). La dilución de muestras debe realizarse con el agua para la dilución de muestras (Dil.).

Valoración de las muestras

Se recomienda encarecidamente utilizar la mezcla de reacción para control (CTRL) suministrada con el kit *therascreen* BRAF RGQ PCR a fin de valorar el ADN total amplificable de BRAF de la muestra. El ensayo de control amplifica una región del exón 3 del gen BRAF. Se recomienda preparar las muestras únicamente con el ensayo de control usando el control positivo (PC) de BRAF como control positivo y agua para el control sin molde (NTC) como control sin molde.

Nota: la valoración del ADN debería basarse en la PCR y puede diferir de la cuantificación basada en las lecturas de absorbancia. Se suministra mezcla de reacción para control (CTRL) adicional para valorar la calidad y la cantidad de las muestras de ADN antes del análisis con el kit *therascreen* BRAF RGQ PCR.

Materiales suministrados

Contenido del kit

therascreen BRAF RGQ PCR Kit			(24)					
N.° de referencia			870211					
Número de reacciones			24					
Control Reaction Mix (mezcla de reacción para control o CTRL)	Rojo	1 CTRL	2 × 720 µl					
V600E/Ec Reaction Mix (mezcla de reacción V600E/Ec)	Púrpura	2 V600E/Ec	720 µl					
V600D Reaction Mix (mezcla de reacción V600D)	Naranja	3 V600D	720 µl					
V600K Reaction Mix (mezcla de reacción V600K)	Rosa	4 V600K	720 µl					
V600R Reaction Mix (mezcla de reacción V600R)	Verde	5 V600R	720 µl					
BRAF Positive Control (control positivo de BRAF)	Beis	PC	250 µl					
Taq DNA Polymerase (Taq ADN polimerasa)	Menta	Таq	2 × 80 µl					
Water for NTC (agua para el NTC)	Blanco	NTC	1,9 ml					
Water for Sample Dilution (agua para la dilución de la muestra)	Blanco	Dil.	1,9 ml					
therascreen BRAF RGQ PCR Kit Ha (manual de uso en inglés)	, therascreen BRAF RGQ PCR Kit Handbook (manual de uso en inglés)							

Materiales requeridos pero no suministrados

Siempre que trabaje con productos químicos, utilice una bata de laboratorio adecuada, guantes desechables y gafas protectoras. Para obtener más información, consulte las hojas de datos correspondientes sobre seguridad (SDS), que puede solicitar al proveedor del producto.

Reactivos

- Kit para el aislamiento de ADN (consulte "Extracción y preparación del ADN", en la página 14)
- Xileno
- Etanol (96-100%)*

Consumibles

- Tubos de microcentrífuga de 1,5 ml o 2 ml (para los pasos de lisis)
- Tubos de microcentrífuga de 1,5 ml (para los pasos de elución) (suministrados por Brinkmann [Safe-Lock, n.º de referencia 022363204], Eppendorf [Safe-Lock, n.º de referencia 0030 120.086] o Sarstedt [Safety Cap, n.º de referencia 72.690])[†]
- Pipetas exclusivas[‡] (ajustables) para la preparación de muestras
- Pipetas exclusivas[‡] (ajustables) para la preparación de la mezcla maestra para PCR
- Pipetas exclusivas[‡] (ajustables) para la dispensación de ADN molde
- Puntas de pipeta estériles con filtros (para evitar la contaminación cruzada, recomendamos puntas de pipeta con barreras para aerosoles)

Equipo

- Agitador calentador, incubador orbital térmico, bloque térmico o baño de agua que permita la incubación a 90 °C[‡]
- Centrífuga de mesa[‡] con rotor para tubos de reacción de 2 ml
- Vórtex[‡]
- * No utilice alcohol desnaturalizado, que contiene otras sustancias como metanol o metiletilcetona.
- [†] Esta no es una lista de proveedores completa.
- [‡] Compruebe que los equipos se han revisado y calibrado según las recomendaciones del fabricante.

- Equipo Rotor-Gene Q MDx 5plex HRM*[†] con canales de fluorescencia para Cycling Green y Cycling Yellow (detección de FAM y HEX, respectivamente)
- Software Rotor-Gene Q, versión 2.3 con software BRAF Assay Package (versión 3.1.1) instalado para la detección de mutaciones automatizada (consulte el apartado "Apéndice II: instalación del software therascreen BRAF Assay Package", en la página 89)

Nota: el software Rotor-Gene Q se puede utilizar sin el software BRAF Assay Package para la detección de mutaciones manual. Consulte el apartado "Apéndice I: protocolo manual del kit *therascreen* BRAF RGQ PCR", en la página 60.

- 0.1 ml Strip Tubes and Caps (tubos y tapones de tiras de 0,1 ml) para uso con un rotor de 72 pocillos (QIAGEN, n.º de referencia 981103 o 981106)
- Tubos estériles de microcentrífuga para la preparación de las mezclas maestras
- Loading Block 72 × 0.1 ml Tubes (tubos de 72 × 0,1 ml de bloque de carga), bloque de aluminio para la configuración de reacción manual con pipeta de un solo canal (QIAGEN, referencia 9018901)

Advertencias y precauciones

Para uso de diagnóstico in vitro

Información de seguridad

Siempre que trabaje con productos químicos, utilice una bata de laboratorio adecuada, guantes desechables y gafas protectoras. Para obtener más información, consulte las hojas de datos correspondientes sobre seguridad (SDS). Puede obtenerlas en línea en el práctico y compacto formato PDF en <u>www.qiagen.com/safety</u>, desde donde también podrá buscar, ver e imprimir las hojas de datos SDS de todos los kits y componentes de los kits QIAGEN[®].

- * Compruebe que los equipos se han revisado y calibrado según las recomendaciones del fabricante.
- [†] En otros países, si corresponde, se puede utilizar el equipo Rotor-Gene Q 5plex HRM con una fecha de producción de mayo de 2011 o posterior. La fecha de producción se puede obtener del número de serie situado en la parte posterior del equipo. El número de serie presenta el formato "mmaannn", donde "mm" indica el mes de producción en dígitos, "aa" indica los dos últimos dígitos del año de producción y "nnn" indica el identificador exclusivo del equipo.

Precauciones generales

El usuario debe proceder siempre de acuerdo a las siguientes recomendaciones:

- Almacene y extraiga el material positivo (muestras y controles positivos) por separado del resto de reactivos y añádalo a la mezcla de reacción en una zona separada físicamente.
- Extreme la precaución para evitar la contaminación de las reacciones de PCR con material de control sintético. Es recomendable usar pipetas específicas independientes para preparar las mezclas de reacción y añadir ADN molde. La preparación y dispensación de las mezclas de reacción deben realizarse en una zona separada de la zona donde se añade el molde. Los tubos de Rotor-Gene Q no se deben abrir después de haber finalizado la serie PCR. Con ello, se evita la contaminación del laboratorio con productos posteriores a la PCR.
- Los reactivos del kit therascreen BRAF RGQ PCR presentan una dilución óptima. No se recomienda una mayor dilución de los reactivos puesto que estos podrían perder eficacia. No se recomienda utilizar volúmenes de reacción inferiores a 25 µl puesto que se incrementaría el riesgo de resultados falsos negativos.
- Todos los reactivos del kit therascreen BRAF RGQ PCR se han formulado específicamente para obtener un rendimiento óptimo. Todos los reactivos suministrados con el kit therascreen BRAF RGQ PCR se suministran para su uso exclusivo con otros reactivos del mismo kit therascreen BRAF RGQ PCR. Para mantener un rendimiento óptimo de los reactivos del kit, no los sustituya.
- Utilice únicamente la Taq ADN polimerasa (Taq) suministrada con el kit. No la sustituya por Taq ADN polimerasa de otros kits del mismo o de otro tipo ni por Taq ADN polimerasa de otro fabricante.

Almacenamiento y manipulación de reactivos

El kit *therascreen* BRAF RGQ PCR se suministra en hielo seco y debe mantenerse congelado a la llegada. En caso de que el kit *therascreen* BRAF RGQ PCR no esté congelado a la llegada, de que el embalaje externo se haya abierto durante el transporte o de que el envío no incluya la nota de embalaje, el manual o los reactivos, póngase en contacto con los departamentos del servicio técnico de QIAGEN (consulte la contraportada o visite <u>www.qiagen.com</u>). Tras recibirlo, debe almacenar el kit *therascreen* BRAF RGQ PCR inmediatamente en un congelador a una temperatura constante de –15 a –30 °C y protegido de la luz. Los primers Scorpions (así como todas las moléculas marcadas con fluorescencia) deben protegerse de la luz para evitar el blanqueamiento.

Cuando se almacena en las condiciones recomendadas en el embalaje original, el kit es estable hasta la fecha de caducidad que figura en la caja. No es aconsejable descongelarlo y volver luego a congelarlo. No exceda un máximo de 6 ciclos de congelación-descongelación.

Manipulación y almacenamiento de muestras

Nota: todas las muestras deben manipularse como material potencialmente infeccioso.

El material de las muestras debe ser ADN genómico humano, obtenido de muestras de tejido fijado en formalina e impregnado en parafina (FFPE). Las muestras se deben transportar de acuerdo con la metodología anatomopatológica estándar para garantizar la calidad de las muestras.

Existe la posibilidad de que las muestras de tumores y los datos de una muestra de tumor no coincidan con otras secciones del mismo tumor. Las muestras de tumores también pueden contener tejido no tumoral. En un principio, no se prevé que el ADN del tejido no tumoral contenga las mutaciones que detecta el kit *therascreen* BRAF RGQ PCR.

Procedimiento

Extracción y preparación del ADN

Las características de rendimiento del kit *therascreen* BRAF RGQ PCR se han determinado mediante ADN extraído con el kit QIAamp FFPE Tissue (QIAGEN, n.° de referencia 56404). Si se utiliza el kit QIAamp FFPE Tissue, lleve a cabo la extracción del ADN de acuerdo con las instrucciones del manual y tenga en cuenta las recomendaciones siguientes:

- Los cortes de FFPE deben colocarse en un portaobjetos de vidrio.
- El exceso de parafina localizado alrededor de los cortes tisulares debe retirarse mediante un bisturí estéril nuevo.
- El corte tisular debe depositarse en los tubos de microcentrífuga utilizando un bisturí nuevo para cada muestra que se vaya a extraer.
- El ADN genómico purificado debe eluirse en 120-200 µl de tampón ATE (suministrado en el kit QIAamp DNA FFPE Tissue). Almacene el ADN genómico purificado a una temperatura de entre –15 y –30 °C.

La valoración del ADN debería basarse en la mezcla de reacción para control (CTRL) suministrada con el kit *therascreen* BRAF RGQ PCR y puede diferir de la cuantificación basada en las lecturas de absorbancia. Se suministra mezcla de reacción para control (CTRL) adicional para valorar la calidad y la cantidad de las muestras de ADN antes del análisis con el kit *therascreen* BRAF RGQ PCR.

Nota: para garantizar suficiente ADN para el análisis, se recomienda extraer conjuntamente dos portaobjetos de FFPE como mínimo en primera instancia y valorarlos con el ensayo de control. Si se ha obtenido ADN suficiente para la PCR, pueden extraerse más portaobjetos y agrupar el ADN.

Nota: para garantizar suficiente ADN para el análisis, los cortes de FFPE deben tener un grosor mínimo de 5 $\mu m.$

Todos los ensayos del kit *therascreen* BRAF RGQ PCR generan productos de PCR cortos. Sin embargo, el kit *therascreen* BRAF RGQ PCR no funciona correctamente con un ADN excesivamente fragmentado.

Protocolo: valoración de las muestras

Este protocolo se utiliza para valorar el ADN amplificable total de las muestras mediante BRAF CE Sample Assessment Locked Template (Assay Package) para la valoración de muestras automatizada.

Nota: para obtener información sobre la valoración manual de las muestras, consulte el apartado "Apéndice I: protocolo manual del kit *therascreen* BRAF RGQ PCR", en la página 60.

Cuestiones importantes antes de comenzar

- Antes de iniciar el procedimiento, consulte el apartado "Precauciones generales", en la página 12.
- Tómese su tiempo para familiarizarse con el equipo Rotor-Gene Q MDx antes de iniciar el protocolo. Consulte el manual del usuario del equipo.
- No mezcle en vórtex la enzima Taq ADN polimerasa (Taq) ni ninguna otra mezcla que contenga Taq ADN polimerasa, ya que esto inactivaría la enzima.
- Pipetee la enzima Taq ADN polimerasa (Taq). Para ello, introduzca la punta de la pipeta justo debajo de la superficie del líquido para evitar que la punta se cubra de enzima en exceso.
- La mezcla de reacción para control (CTRL) disponible permite evaluar hasta 24 muestras.

Antes de comenzar

- Compruebe que se haya instalado el software therascreen BRAF Assay Package antes de utilizar el equipo Rotor-Gene Q por primera vez (consulte el apartado "Apéndice II: instalación del software therascreen BRAF Assay Package" en la página 89).
- Antes de cada uso, es necesario descongelar todos los reactivos durante al menos 1 hora a temperatura ambiente (15-25 °C), mezclarlos invirtiendo cada tubo 10 veces y centrifugarlos brevemente para recoger el contenido de la parte inferior del tubo.
- Asegúrese de que la enzima Taq ADN polimerasa (Taq) se encuentra a temperatura ambiente (15-25 °C) antes de cada uso. Centrifugue el tubo brevemente para que la enzima se deposite en el fondo del tubo.

Procedimiento

- Descongele la mezcla de reacción para control (CTRL), el agua para el control sin molde (NTC) y el control positivo (PC) a temperatura ambiente (15-25 °C) durante al menos 1 hora. Cuando se hayan descongelado los reactivos, mézclelos invirtiendo cada tubo 10 veces para evitar concentraciones localizadas de sales. A continuación, centrifúguelos brevemente para que el contenido se deposite en el fondo del tubo.
- 2. Prepare cantidades suficientes de mezclas maestras (mezcla de reacción para control [CTRL] más la enzima *Taq* ADN polimerasa [*Taq*]) para muestras de ADN, una reacción de control positivo y una reacción de control sin molde, según los volúmenes indicados en la tabla 2. Incluya reactivos para una muestra adicional a fin de que exista excedente suficiente para la configuración de la PCR.

La mezcla maestra contiene todos los componentes necesarios para PCR excepto la muestra.

Componente	Volumen
Mezcla de reacción para control (CTRL)	19,5 µl × (n+1)*
Taq ADN polimerasa (Taq)	0,5 µl × (n+1)*
Volumen total	20,0 µl/reacción

Tabla 2. Preparación de la mezcla maestra de ensayo para control*

* n = número de reacciones (muestras y controles). Cuando realice la mezcla maestra, no olvide preparar la cantidad suficiente para 1 muestra adicional (n+1) a fin de que exista excedente suficiente para la configuración de la PCR. El valor n no debería ser superior a 26 (24 muestras, más 2 controles).

 Mezcle bien la mezcla maestra pipeteando suavemente arriba y abajo 10 veces. Coloque el número adecuado de tubos de tiras en el bloque de carga según el esquema de la ilustración 1. Añada inmediatamente 20 µl de la mezcla maestra en cada tira de tubo para PCR.

Los tapones permanecen en el contenedor de plástico hasta que son necesarios. Para la valoración de muestras, la mezcla maestra para ensayo de control debe añadirse a un pocillo de control positivo, un pocillo de control negativo y un pocillo por cada muestra.

Ensayo									
Control	1 (PC)	9	17	25	-	-	-	-	-
Control	2 (NTC)	10	18	26	-	-	-	-	-
Control	3	11	19	-	-	-	-	-	-
Control	4	12	20	-	-	-	-	-	-
Control	5	13	21	-	-	-	-	-	-
Control	6	14	22	-	-	-	-	-	-
Control	7	15	23	-	-	-	-	-	-
Control	8	16	24	-	-	_	_	_	-

Ilustración 1. Disposición de los ensayos de evaluación de muestras en el bloque de carga. Los números indican las posiciones en el bloque de carga y la posición final del rotor.

4. Añada inmediatamente 5 µl de agua para el control sin molde (NTC) al tubo de control sin molde (número del tubo de PCR: 2) y tápelo. Añada 5 µl de cada muestra a los tubos de muestra (números de los tubos de PCR: del 3 al 26) y tápelos. Añada 5 µl de control positivo (PC) de BRAF al tubo de control positivo (número del tubo de PCR: 1) y tápelo.

Marque los tapones de los tubos para indicar la dirección en la que se deben cargar los tubos en el equipo Rotor-Gene Q MDx.

- 5. Después de cerrar todos los tubos de PCR, realice una comprobación visual de los niveles de llenado de los tubos de muestras para asegurarse de que la muestra se ha añadido a todos los tubos.
- 6. Invierta todos los tubos de PCR (4 veces) para mezclar las muestras y las mezclas de reacción.
- Coloque los tubos de tiras de PCR en las posiciones apropiadas en el rotor de 72 pocillos (ilustración 1). Si el rotor no está totalmente lleno, debe rellenar todas las posiciones vacías con un tubo tapado vacío.
- Coloque inmediatamente el rotor de 72 pocillos en el equipo Rotor-Gene Q MDx. Asegúrese de que el anillo de fijación (accesorio del equipo Rotor-Gene Q) se encuentra en la parte superior del rotor para proteger los tubos durante la serie.
- 9. Inicie el software Rotor-Gene Q. Para ello, haga doble clic en el icono "therascreen BRAF CE Sample Assessment Locked Template" (Molde bloqueado de valoración de muestras de BRAF CE de therascreen) del escritorio del portátil conectado al equipo Rotor-Gene Q MDx (consulte la ilustración 2).

Ilustración 2. Icono *"therascreen* BRAF CE Sample Assessment Locked Template" (Molde bloqueado de valoración de muestras de BRAF CE de *therascreen*).

10. La pestaña "Setup" (Configuración) (consulte la ilustración 3) se abre de manera predeterminada. Confirme que el anillo de fijación esté sujeto y marque la casilla "Locking Ring Attached" (Anillo de fijación sujeto). Cierre la tapa del equipo Rotor-Gene Q.

Ilustración 3. Pestaña "Setup" (Configuración) (1) y opción "Locking Ring Attached" (Anillo de fijación sujeto) (2)

11. Introduzca el identificador de la serie en el campo "Run ID" de acuerdo con la convención de nomenclatura local. Escriba el nombre de la muestra en el campo "Sample Name" según la convención de nomenclatura local y pulse la tecla Enter. Al hacerlo, se añade el nombre de la muestra a la lista de muestras que aparece más abajo y se le asigna un identificador ("Sample ID" 1, 2, 3, etc.). Además, se actualiza el panel "Layout of the pipetting adapter" (Esquema del adaptador de pipeteo) situado a la derecha con el nombre de la muestra (ilustración 4).

Nota: también existe la posibilidad de importar los nombres de las muestras almacenadas en los formatos *.smp (archivo de muestras de Rotor-Gene Q) o *.csv (valores separados por comas) mediante el botón "Import Samples" (Importar muestras). Con este método, los nombres de las muestras se introducen automáticamente.

Nota: en el panel "Layout of the pipetting adapter" (Esquema del adaptador de pipeteo), compruebe que la nueva muestra aparezca resaltada con un color distinto y que el nombre de la misma aparezca en la posición de muestras (ilustración 4).

Nota: los nombres de las muestras con más de 8 caracteres no pueden mostrarse al completo en el panel "Layout of the pipetting adapter" (Esquema del adaptador de pipeteo).

Ilustración 4. Introducción del identificador de la serie ("Run ID") y del nombre de la muestra (**"Sample Name").** (1 = Campo "Run ID" [Identificador de la serie], 2 = Campo "Sample Name" [Nombre de la muestra], 3 = Lista de muestras, 4 = Panel "Layout of the pipetting adapter" [Esquema del adaptador de pipeteo], 5 = Botón "Import Samples" [Importar muestras].)

12. Repita el paso 11 para introducir los nombres de todas las muestras adicionales (ilustración 5).

Nota: para editar el nombre de una muestra, haga clic en la opción "Sample Name" de la lista de muestras para que la muestra seleccionada aparezca en el campo "Sample Name" anterior. Modifique el nombre de la muestra según la convención de nomenclatura local y pulse la tecla Enter para actualizar el nombre.

Ilustración 5. Introducción de nombres de muestra adicionales en el campo "Sample Name" (1 = Campo "Sample Name" [Nombre de la muestra], 2 = Lista de muestras, 3 = Panel "Layout of the pipetting adapter" [Esquema del adaptador de pipeteo]) 13. Cuando haya terminado de introducir todos los nombres de las muestras, compruebe que sean correctos. Si es necesario, incluya cualquier información adicional en el campo "Notes" (Notas) y haga clic en el botón "Start Run" (Iniciar la serie) (ilustración 6).

Nota: si queda alguna posición del rotor vacía, aparecerá un mensaje de advertencia ("Warning") (ilustración 6) para recordarle que deben ocuparse todas las posiciones sin utilizar del rotor con tubos vacíos tapados. Compruebe que todas las posiciones sin utilizar del rotor contengan un tubo vacío tapado y haga clic en "OK" (Aceptar) para continuar.

T File Help										- 8
	View									
<u>S</u> etup	12	Ĭ	Bun Progress			1		<u>Anal</u>	uia -	
This screen diplays miccellaneous setup options for Kit Name: themascreen BRAF RGQ PCR Kit Template Version: 31.1	Rotor: Looking	Idok Stat Run when you are ready	to begin the run.							_
Run ID: [DNA Sample Assessment [mpot Samples]		Layout of Position 1	the pipetting adapte			-				
Samples:		PC Control Rotor-Gene Q Series So	Sample 7 Control	Postor,17 Notured	Paston 25 Not used	Pasition: 33 Not used	Position 41 Not used	Position 43 Not used	Position:57 Not used	Penilige 05 Not used
Sample ID Sample Name 1 Sample 1 2 Sample 2 3 Sample 3 4 Sample 3 6 Sample 3		Warning - 1 Please fill a	There are unused I I unused position	lotor Tubes. s with empty to	ıbes.	Pacition 34 Not used	Peekon 42 Not used	Pasiton 50 Not used	Position 58 Not used	Position (% Not cared
6 Sample 6 7 Sample 7 8 Sample 8		Do you wis	h to continue?		ancel	Produce 25 Not used	Peolen 43 Nat Good	Packer,51 Not used	Position 53 Not used	Position-G7 Not-used
		Coma	Not used	Narmed	Natured	Postion 36 Not used	Postion 44 Not used	Posterc52 Not used	Position:60 Not used	Postor 60 . Not used
		Position 5 Sample 3 Control	Foster(1) Not used	Probert 21 Not used	Postan 29 Not used	Position 37 Not used	Poster 45 Norused	Peokon 53 Not used	Positorc61 Not used	Position 63 Not used
		Position 6 Sample 4 Control	Position 14 Not used	Postor:22 Nutured	Proton 30 Nytuned	Peoples 38 Not said	Position 45 Not used	Position 54 Not used	Position 62 Not used	Position 70 Not used
		Position:7 Sample 5 Control	Fourier 15 Not used	Postion 23 Not used	Position 31 Not used	Poolen:29 Notured	Poulter(47 Net-uned	Paston 55 Not used	Position:63 Not used	Poskew, 71 Nor used
		Poston S								

Ilustración 6. Campo "Notes" (Notas) (1), botón "Start Run" (Iniciar la serie) (2) y mensaje "Warning" (Advertencia) sobre las posiciones sin utilizar del rotor (3)

14. Aparecerá una ventana "Save As" (Guardar como). Seleccione un nombre de archivo adecuado y guarde la serie de PCR como un archivo ejecutable *.rex en la ubicación seleccionada. Luego, haga clic en el botón "Save" (Guardar) (ilustración 7).

Ilustración 7. Guardado del archivo ejecutable (1 = Ventana "Save As" [Guardar como], 2 = Campos "File Name" [Nombre de archivo] y "Save as type" [Guardar como tipo], 3 = Botón "Save" [Guardar])

15. Comienza la serie de PCR.

Nota: cuando empieza la serie, la pestaña "Run Progress" (Progreso de la serie) se abre automáticamente para mostrar el registro de la temperatura y el tiempo restante para finalizar la serie (ilustración 8).

Rotor-Gene Q Series	Software VIRTUAL MODE - therascreen BRAF CE	Sample Assessment Locked Template 2014-	09 12 (1) - [BRAF Analysis]	an a granda and a	
File Help					- 10
	View				
	Setup	Bun	Progress	Arahm	
		104 minute Temperature Troce -	e(s) remaining. Temp (*C) vs Time (min)		
00					
5					
0					
5					
)					
5					
0					
5					
)					
10 					
1					
5					
)					
5					
0					
		100	1000		

Ilustración 8. Pestaña de progreso de la serie ("Run Progress")

16. Una vez finalizada la serie, se abre automáticamente la pestaña "Analysis" (Análisis).

Nota: si la pestaña "Analysis" no se abre, haga clic en la pestaña "Analysis" (ilustración 9).

Nota: encontrará una explicación sobre el método de cálculo empleado en el apartado "Interpretación de los resultados" de la página 39.

The Map Dan Progen Danabeni Series Beord Control Run Sangla Reval Table: Der D Streps Name 2 NIC Control 2.0 NIC Control 2.0 NIC Control 2.0 NIC Control	Rotor-Gene Q Series Software VIRTUAL N	NODE - 354_SA_Sample_Control_Ct	Famis MinCtFam_CtFam=MaxCtGood_NoCtHex.rex-revHEAD.svn000.tm	p - [BRAF Analysis]	
Yete Andrein Series Band Series Band Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series Series	rse rsep				(_ # X
State Bandyris Bandyris		View			GAGEN
Beet anted Rus Sangle Result Labe: Dr Control Armong Total Armong 100 20.00 Voted 11C Control 20.40 Voted 15 sergle 1 20.44 Voted	Setup		Bun Progress	Analysis	
antori Run Sangle Revel Tatle: Arr O Sangle Nove Control Anarge O 2000 Vidd NTC Control Sangle 1 20.41 Vidd Sangle 1 20.44 Vidd Sangle 1 Vidd Sangle			Beport	6.	- - - -
® D Sanga Kane Constants D Tege Kane Value PC Condu 2.80 Value Value VTC Condu 2.80 Value Value Sangle 1 2.84 Value Value	ntrol Run Sample Result Table:				1
PC Control NTC Control Sergie 1 23.44 · Vaid	be ID Sample Name		Control Assay Ct Flags/Warnings	Status	
Segin 1 23.4 Vaid	PC Control NTC Control		28.09 - 29.40 -	Valid	-
	Sample 1		29.44 -	Valid	

Ilustración 9. Pestaña "Analysis" (Análisis) e informe de los resultados (1 = pestaña "Analysis" [Análisis], 2 = "Sample QC Result Table" [Tabla de resultados de CC de la muestra])

- 17. Los resultados de control se presentan de la siguiente manera en la tabla de resultados del CC de la muestra "Sample QC Result Table" (ilustración 9).
 - Controles de la serie (PC y NTC, posiciones 1 y 2 de tubos respectivamente). Si los resultados se hallan dentro de los rangos aceptables, cada uno mostrará el valor "Valid" (Válido); de lo contrario, aparecerá el valor "Invalid" (No válido).
 - Un valor de C_T > 32,00 para la reacción de control de la muestra generará un resultado "Invalid" (No válido). La cantidad de ADN no es suficiente para realizar el análisis de la mutación. Es necesario volver a analizar la muestra. Si la cantidad de ADN sigue siendo insuficiente, extraiga más tejido tumoral si es posible (consulte el apartado "Guía de resolución de problemas" en la página 41).

- Un valor de C_T < 21,95 para la reacción de control de la muestra generará un resultado "Invalid" (No válido). La concentración de ADN es demasiado alta para realizar el análisis de la mutación. Diluya la muestra con agua exenta de nucleasas (Dil.) y repita el análisis. Diluya hasta obtener un valor de C_T comprendido entre 21,95 y 32,00. Una dilución 1:1 aumenta el valor de C_T en aproximadamente 1,0.
- Un valor de C_T de la reacción de control de la muestra de 21,95-32,00, (21,95 ≤ C_T de control ≥ 32,00) generará un resultado "Valid" (Válido). La concentración de ADN es adecuada para realizar el análisis de mutación.

Nota: si fuera necesario volver a realizar una extracción o una dilución, repita la reacción de control para confirmar que la concentración de ADN es la adecuada para realizar el análisis.

18. Si lo desea, puede generar archivos de informe haciendo clic en el botón "Report" (Informe). Aparecerá la ventana "Report Browser" (Explorador de informes). En el apartado "Templates" (Moldes), seleccione "BRAF CE Analysis Report" (Informe del análisis de BRAF CE) y luego haga clic en el botón "Show" (Mostrar) (ilustración 10).

Nota: existe la posibilidad de guardar los informes en otra ubicación en formato de archivo Web si se hace clic en el botón "Save As" (Guardar como) situado en la esquina superior izquierda de cada informe.

Ilustración 10. Selección del informe de análisis de BRAF CE ("BRAF CE Analysis Report") (1 = Botón "Report" [Informe], 2 = "Report Browser" [Explorador de informes], 3 = "BRAF CE Analysis Report" [Informe del análisis de BRAF CE], 4 = Botón "Show" [Mostrar])

Protocolo: detección de mutaciones de BRAF

Este protocolo está diseñado para la detección de mutaciones de BRAF. Cuando una muestra se considera correcta según la evaluación de muestras, se puede analizar mediante los ensayos de mutación de BRAF con software automatizado.

Nota: para obtener información sobre la detección manual de las muestras, consulte el apartado "Apéndice I: protocolo manual del kit *therascreen* BRAF RGQ PCR", en la página 60.

Cuestiones importantes antes de comenzar

- Antes de iniciar el procedimiento, consulte el apartado "Precauciones generales", en la página 12.
- Tómese su tiempo para familiarizarse con el equipo Rotor-Gene Q MDx antes de iniciar el protocolo. Consulte el manual del usuario del equipo.
- No mezcle en vórtex la enzima Taq ADN polimerasa (Taq) ni ninguna otra mezcla que contenga Taq ADN polimerasa, ya que esto inactivaría la enzima.
- Para utilizar el kit therascreen BRAF RGQ PCR de forma eficaz, es preciso agrupar las muestras en lotes de 6 como mínimo. Un tamaño de lote inferior implica una capacidad de análisis de muestras inferior con el kit therascreen BRAF RGQ PCR.
- Pipetee la enzima Taq ADN polimerasa (Taq). Para ello, introduzca la punta de la pipeta justo debajo de la superficie del líquido para evitar que la punta se cubra de enzima en exceso.

Antes de comenzar

- Compruebe que se haya instalado el software therascreen BRAF Assay Package antes de utilizar el equipo Rotor-Gene Q por primera vez (consulte el apartado "Apéndice I: protocolo manual del kit therascreen BRAF RGQ PCR" en la página 60).
- Antes de cada uso, es necesario descongelar todos los reactivos durante al menos 1 hora a temperatura ambiente (15-25 °C), mezclarlos invirtiendo cada tubo 10 veces y centrifugarlos brevemente para recoger el contenido de la parte inferior del tubo.
- Asegúrese de que la enzima Taq ADN polimerasa (Taq) se encuentra a temperatura ambiente (15-25 °C) antes de cada uso. Centrifugue el tubo brevemente para que la enzima se deposite en el fondo del tubo.

Procedimiento

- Descongele las mezclas de reacción, el agua para el control sin molde (NTC) y el control positivo (PC) de BRAF a temperatura ambiente (15-25 °C) durante al menos 1 hora. Cuando se hayan descongelado los reactivos, mézclelos invirtiendo cada tubo 10 veces para evitar concentraciones localizadas de sales. A continuación, centrifúguelos brevemente para que el contenido se deposite en el fondo del tubo.
- 2. Prepare cantidades suficientes de mezclas maestras (mezcla de reacción más la enzima *Taq* ADN polimerasa [*Taq*]) para muestras de ADN, una reacción de control positivo y una reacción de control sin molde, según los volúmenes indicados en la tabla 3. Incluya reactivos para una muestra adicional a fin de que exista excedente suficiente para la configuración de la PCR.

Las mezclas maestras contienen todos los componentes necesarios para la PCR excepto la muestra.

Ensayo	Volumen de mezcla de reacción	Volumen de <i>Taq</i> ADN polimerasa (<i>Taq</i>)
Control	19,5 µl × (n+1)	0,5 µl × (n+1)
V600E/Ec	19,5 µl × (n+1)	0,5 µl × (n+1)
V600D	19,5 µl × (n+1)	0,5 µl × (n+1)
V600K	19,5 µl × (n+1)	0,5 µl × (n+1)
V600R	19,5 µl × (n+1)	0,5 µl × (n+1)

Tabla 3. Preparación de las mezclas maestras del enso

 * n = número de reacciones (muestras y controles). Cuando realice la mezcla maestra, no olvide preparar la cantidad suficiente para 1 muestra adicional (n+1) a fin de que exista excedente suficiente para la configuración de la PCR.

Mezcle bien la mezcla maestra pipeteando suavemente arriba y abajo 10 veces. Coloque el número adecuado de tubos de tiras en el bloque de carga según el esquema de la ilustración 11. Añada inmediatamente 20 µl de mezcla maestra a cada tubo de tira de PCR (no suministrada).

Los tapones permanecen en el contenedor de plástico hasta que son necesarios.

	Cont	roles		Número de muestras					
Ensayo	РС	NTC	1	2	3	4	5	6	7
Control	1	9	17	25	33	41	49	57	65
V600E/Ec	2	10	18	26	34	42	50	58	66
V600D	3	11	19	27	35	43	51	59	67
V600K	4	12	20	28	36	44	52	60	68
V600R	5	13	21	29	37	45	53	61	69
-	6	14	22	30	38	46	54	62	70
-	7	15	23	31	39	47	55	63	71
-	8	16	24	32	40	48	56	64	72

Ilustración 11. Disposición de los ensayos de control y mutación en el bloque de carga. Los números indican la posición en el bloque de carga y la posición final del rotor.

4. Añada inmediatamente 5 µl de agua para el control sin molde (NTC) a los tubos de tiras de PCR de control sin molde (números de los tubos de PCR: del 9 al 13) y tápelos. Añada 5 µl de cada muestra en los tubos de muestras (números de los tubos de PCR: 17-21, 25-29, 33-37, 41-45, 49-53, 57-61 y 65-69) y tápelos. Añada 5 µl de control positivo (PC) de BRAF a los tubos de control positivo (números de los tubos de PCR: del 1 al 5) y tápelos. Cada muestra de ADN se debe analizar tanto con el ensayo de control como con todos los ensayos de mutación.

Marque los tapones de los tubos para indicar la dirección en la que se deben cargar los tubos en el equipo Rotor-Gene Q MDx.

- 5. Después de cerrar todos los tubos de PCR, realice una comprobación visual de los niveles de llenado de los tubos de muestras para asegurarse de que la muestra se ha añadido a todos los tubos.
- 6. Invierta todos los tubos de PCR (4 veces) para mezclar las muestras y las mezclas de reacción.
- 7. Coloque los tubos de tiras de PCR en las posiciones apropiadas en el rotor de 72 pocillos (ilustración 11).

Cada serie de PCR admite un máximo de 7 muestras. Si el rotor no está totalmente lleno, debe rellenar todas las posiciones vacías con un tubo tapado vacío.

- Coloque inmediatamente el rotor de 72 pocillos en el equipo Rotor-Gene Q MDx. Asegúrese de que el anillo de fijación (accesorio del equipo Rotor-Gene Q) se encuentra en la parte superior del rotor para proteger los tubos durante la serie.
- 9. Inicie el software Rotor-Gene Q y abra el molde simultáneamente haciendo doble clic en el icono "therascreen BRAF CE Mutation Analysis Locked Template" (Molde bloqueado de valoración de muestras de BRAF CE de therascreen) del escritorio del portátil conectado al equipo Rotor-Gene Q (ilustración 12).

Ilustración 12. Icono *"therascreen* BRAF CE Mutation Analysis Locked Template" (Molde bloqueado de análisis de mutaciones BRAF CE de *therascreen*)

10. La pestaña "Setup" (Configuración) (consulte la ilustración 13) se abre de manera predeterminada. Confirme que el anillo de fijación esté sujeto y marque la casilla "Locking Ring Attached" (Anillo de fijación sujeto). Cierre la tapa del equipo Rotor-Gene Q.

View										
Setup		Bun Piogre	\$11 -		Ì			Analysis	1)	
This screen displays miscellaneous setup options for the sun. Complete the fields and click Start Run whe Kit Name: thesascreen BRAF RGQ Rotor: PCR Kat Template Version: 3.1.1	n you are ready to	begin the run pipetting adap	NTC	(list used) (ist used) (het eased) (hist used) (lice used) (11
Run ID:	Control	Position:1 PC Control	Position: 9 NTC Control	Positor, 17 Not used	Pestor 25 Not used	Position 30 Not used	Position 41 Not used	Postory #3 Not used	Position 57 Not used	Pesition
Samplex: Sample Name Sample Name	V400E.E.C	Position:2 PC V600E/Ec	Position:10 NTC V600E/Ec	Poution 18 Not used	Psotien.35 Not and	Pushoe:34 Not used	Posten 42 Not und	Proton 50 Net used	Postor 58 Not used	Psokon Not use
	V6000	Position 3 PC V600D	Position:11 NTC V600D	Position 19 Not used	Position 27 Not used	Pseklon, 35 Not used	Postan O Not und	Position:57 Not used	Pestige:50 Not used	Ppallary Not use
Notes :		Position: 4 PC V600K	Position: 12 NTC V600K	Pention 20 Not used	Position 20 Not used	Pontion 36 Not used	Position 44 Not used	Postor, 52 Not used	Penition 50 Not used	Ploobon Not obe
	VGOOR	Position:5 PC V600R	Position:13 NTC V600R	Position 21 Not used	Peollor:29 Not youd	Position: 37 Not used	Positian (5 Not used	Puntion 53 Nat used	Position.ST Not used	Postion Not use
		Postury 6 Not used	Product 14 Nut used	Position 22 Not used	Product 30 Not used	Pusition Jill Not used	Postor 46 Not used	Proton 54 Nat used	Position 62 Not used	Pasilian Nol use
		Posters? Not used	Position 15 Nat used	Position 23 Not used	Position 31 Not used	Position 39 Not used	Postion 47 Not used	Poston 55 Net used	Position 63 Not used	Position Nat use
		Fosters 8	Pustor 16	Poston 24	Proteer 32	Pushin 40	Foston 48	Protoc 55	Pushor:54	Protect

Ilustración 13. Pestaña "Setup" (Configuración) (1) y opción "Locking Ring Attached" (Anillo de fijación sujeto) (2)

11. Introduzca el identificador de la serie en el campo "Run ID" de acuerdo con la convención de nomenclatura local. Escriba el nombre de la muestra en el campo "Sample Name" según la convención de nomenclatura local y pulse la tecla Enter. Al hacerlo, se añade el nombre de la muestra a la lista de muestras que aparece más abajo y se le asigna un identificador ("Sample ID" 1, 2, 3, etc.). Además, se actualiza el panel "Layout of the pipetting adapter" (Esquema del adaptador de pipeteo) situado a la derecha con el nombre de la muestra (ilustración 14).

Nota: también existe la posibilidad de importar los nombres de las muestras almacenadas en los formatos *.smp (archivo de muestras de Rotor-Gene Q) o *.csv (valores separados por comas) mediante el botón "Import Samples" (Importar muestras). Con este método, los nombres de las muestras se introducen automáticamente. **Nota**: en el panel "Layout of the pipetting adapter" (Esquema del adaptador de pipeteo), compruebe que el nombre de la muestra aparezca resaltado con un color distinto y que todos los ensayos de la columna del círculo de muestras estén resaltados (ilustración 14).

Nota: pueden añadirse un máximo de 7 muestras. Los identificadores de las muestras (en los círculos de las muestras) se asignan automáticamente del 1 al 7.

Nota: los nombres de las muestras con más de 8 caracteres no pueden mostrarse al completo en el panel "Layout of the pipetting adapter" (Esquema del adaptador de pipeteo).

Ilustración 14. Introducción del identificador de la serie ("Run ID") y del nombre de la muestra (**"Sample Name")** (1 = Campo "Run ID" [Identificador de la serie], 2 = Campo "Sample Name" [Nombre de la muestra], 3 = Lista de muestras, 4 = Panel "Layout of the pipetting adapter" [Esquema del adaptador de pipeteo], 5 = Círculo de la muestra resaltado y panel inferior con columna de 5 ensayos, 6 = Botón "Import Samples" [Importar muestras])

12. Repita el paso 11 para introducir los nombres de todas las muestras adicionales (ilustración 15).

Nota: para editar el nombre de una muestra, haga clic en la opción "Sample Name" (Nombre de la muestra) de la lista de muestras para que la muestra seleccionada aparezca en el campo "Sample Name" anterior. Modifique el nombre de la muestra según la convención de nomenclatura local y pulse la tecla Enter para actualizar el nombre.

Ilustración 15. Introducción de nombres de muestra adicionales en el campo "Sample Name" (1 = Campo "Sample Name" [Nombre de la muestra], 2 = Lista de muestras, 3 = Panel "Layout of the pipetting adapter" [Esquema del adaptador de pipeteo]) 13. Cuando haya terminado de introducir todos los nombres de las muestras, compruebe que sean correctos. Si es necesario, incluya cualquier información adicional en el campo "Notes" (Notas) y haga clic en el botón "Start Run" (Iniciar la serie) (ilustración 16).

Nota: si queda alguna posición del rotor vacía, aparecerá un mensaje de advertencia ("Warning") (ilustración 16) para recordarle que deben ocuparse todas las posiciones sin utilizar del rotor con tubos vacíos tapados. Compruebe que todas las posiciones sin utilizar del rotor contengan un tubo vacío tapado y haga clic en "OK" (Aceptar) para continuar.

Ilustración 16. Campo "Notes" (Notas) (1), botón "Start Run" (Iniciar la serie) (2) y mensaje "Warning" (Advertencia) sobre las posiciones sin utilizar del rotor (3)

 14. Aparecerá una ventana "Save As" (Guardar como). Seleccione un nombre de archivo adecuado y guarde la serie de PCR como un archivo ejecutable *.rex en la ubicación seleccionada (ilustración 17).

Favorites		▼ *)	Search Favorites		Q
Organize 🔻				1 ii ii	0
	Desktop Shortcut 451 bytes	Downlo Shortcu 854 byte	ads t is		
📬 Network					-
File name: therascreen BRAF CE Mutat	tion Analysis Locked Temp	late 2014-09-12 (1).rex			-
Save as type: Run File (*.rex)					-
Hide Folders			Save	Cance	1

Ilustración 17. Guardado del archivo ejecutable (1 = Ventana "Save As" [Guardar como], 2 = Campos "File Name" [Nombre de archivo] y "Save as type" [Guardar como tipo], 3 = Botón "Save" [Guardar])

15. Comienza la serie de PCR.

Nota: cuando empieza la serie, la pestaña "Run Progress" (Progreso de la serie) se abre automáticamente para mostrar el registro de la temperatura y el tiempo restante para finalizar la serie (ilustración 18).

Ilustración 18. Pestaña de progreso de la serie ("Run Progress") (1)
16. Una vez finalizada la serie, se abre automáticamente la pestaña "Analysis" (Análisis).

Nota: si la pestaña "Analysis" (Análisis) no se abre, haga clic en la pestaña "Analysis" (ilustración 19).

Nota: encontrará una explicación sobre el método de cálculo empleado en el apartado "Interpretación de los resultados" de la página 39.

Ilustración 19. Pestaña "Analysis" (Análisis) e informe de los resultados (1 = Pestaña "Analysis" [Análisis], 2 = Panel "Run Controls, Positive Control" [Controles de la serie, control positivo], 3 = Panel "Run Controls, Negative Control" [Controles de la serie, control negativo], 4 = Panel "Sample Result Table" [Tabla de resultados de la muestra], 5 = Panel "Mutation Status" [Estado de la mutación])

17. Los resultados del ensayo se presentan de la siguiente manera (ilustración 19):

- Panel "Run Controls, Positive Control" (Controles de la serie, control positivo). Si los resultados se hallan dentro del rango aceptable, en la columna "Positive Control Status" (Estado del control positivo) aparecerá un resultado "Valid" (Válido); de lo contrario, aparecerá un resultado "Invalid" (No válido).
- Panel "Run Controls, Negative Control" (Controles de la serie, control negativo). Si tanto el resultado para "NTC" como para "Internal Control" (Control interno) se hallan dentro de los intervalos aceptables,

aparecerá un resultado "Valid" (Válido) en la columna "Negative Control Status" (Estado del control negativo); de lo contrario, aparecerá un resultado "Invalid" (No válido).

- Panel "Sample Result Table" (Tabla de resultados de la muestra). En la columna "BRAF Mutation Status" (Estado de la mutación de BRAF) se muestran las mutaciones específicas detectadas en las muestras positivas para la mutación.
- 18. Si lo desea, puede generar archivos de informe haciendo clic en el botón "Report" (Informe). Aparecerá la ventana "Report Browser" (Explorador de informes). En el apartado "Templates" (Moldes), seleccione "BRAF CE Analysis Report" (Informe del análisis de BRAF CE) y luego haga clic en el botón "Show" (Mostrar) (ilustración 20).

Nota: existe la posibilidad de guardar los informes en otra ubicación en formato de archivo Web si se hace clic en el botón "Save As" (Guardar como) situado en la esquina superior izquierda de cada informe.

			View					SALEN
		Setup	11/2	В	un Progress	Ĩ	Analysis	
					Beport			
Run Controls, Rotor Position	Assay	E Flags/War	nings	Positive Control S	tahus			
1	Control	14		Valid				
2	V600E/Ec	+		Valid				
3	V600D	+		Valid				
4	VEOOK			Valid				
5	VEOUR	-		Valid				
Run Controls,	Negative Contro	st.						
Rotor Position	Assay	NTC	Internal Control FlagsA	Varnings	Negative Control Statu Valid	·		
10	VEODE/E c	Valid	Vaid and a second	Na April				
11	V600D	Valid	Vald Report Bro	wier	1.000	Contraction of the second		
12	VEOOK	Valid	Valid Report Catego	wes	Templates :			
13	VECOR	Valid	Valid (General)		BRAE OF Analysis Down			
Sample Resul	Table		® theraccreer	BRAF Analysis	TAL 19			1.1
Sample ID Sam	nole Name		BRAF Stat			B	RAF Mutation Status	
1 6	unite 1		Martin F				dation Datastad	
			<u>.</u>					
			_		2/	011		

Ilustración 20. Selección del informe de análisis de BRAF CE ("BRAF CE Analysis Report") (1 = Botón "Report" [Informe], 2 = Panel "Report Browser" [Explorador de informes], 3 = Botón "BRAF CE Analysis Report" [Informe del análisis de BRAF CE], 4 = Botón "Show" [Mostrar])

Interpretación de los resultados (Automatizada)

El software *therascreen* BRAF Assay Package realiza automáticamente el análisis y la identificación de las mutaciones en cuanto finaliza la serie analítica. A continuación se explican los métodos empleados por el software *therascreen* BRAF Assay Package para realizar el análisis y la identificación de las mutaciones.

Nota: para obtener información sobre el análisis manual, consulte el apartado "Apéndice I: *protocolo* manual del kit therascreen BRAF RGQ PCR", en la página 60.

El ciclo de PCR en el que la fluorescencia de una determinada reacción alcanza el valor umbral se define como valor de C_T. Los valores de C_T indican la cantidad de ADN específico introducido. Los valores de C_T bajos indican niveles más altos de ADN introducido, mientras que los valores de C_T altos indican niveles más bajos de ADN introducido. Las reacciones con un valor de C_T se consideran positivas para la amplificación.

El software Rotor-Gene Q interpola las señales de fluorescencia registradas entre dos valores cualesquiera. Por lo tanto, los valores de C_T pueden ser cualquier número real (no solamente enteros) comprendido entre 0 y 40.

En el kit *therascreen* BRAF RGQ PCR, los valores de umbral de los canales verde y amarillo están configurados en 0,15 y 0,05 unidades relativas de fluorescencia, respectivamente. Estos valores se configuran automáticamente en el software *therascreen* BRAF Assay Package.

Se revisan los controles de la serie (control positivo, NTC y controles internos) para asegurar la obtención de valores de C_T aceptables y que las reacciones se realicen correctamente.

Los valores de ΔC_{T} de la muestra se calculan para cada ensayo de mutación mediante la ecuación:

△C_T = [valor de C_T del ensayo de mutación]
– [valor de C_T del ensayo de control]

Las muestras se clasifican como positivas para la mutación cuando su valor de ΔC_T es inferior o igual al valor de ΔC_T de corte de dicho ensayo. Por encima de este valor, se considera que la muestra no alcanza el porcentaje de mutación detectable por el kit *therascreen* BRAF RGQ PCR (por encima del límite de los ensayos) o que la muestra es negativa para la mutación, lo que se indicaría con el resultado "No Mutation Detected" (Mutación no detectada).

La ausencia de amplificación en las reacciones para mutación se clasifica como "No Mutation Detected" (Mutación no detectada). Se prevé que los valores de ΔC_T calculados a partir de la amplificación del fondo sean superiores a los valores de ΔC_T de corte, en cuyo caso la muestra se clasifica como "No Mutation Detected".

Los resultados del ensayo pueden ser "Mutation Detected" (Mutación detectada), "No Mutation Detected" (Mutación no detectada), "Invalid" (No válido) o "Run Control Failed" (Control de la serie erróneo) si alguno de los controles de la serie da error. En las muestras positivas para la mutación, las mutaciones específicas se indican según la lógica de la reactividad cruzada de la "Tabla 8. Nomenclatura del estado de mutación de la muestra", en la página 54. En los apartados "Protocolo: valoración de las muestras" (página 15), "Protocolo: detección de mutaciones de BRAF" (página 27) y "Indicadores del software *therascreen* BRAF Assay Package" (página 42) de este manual encontrará la explicación de otros posibles resultados que también pueden aparecer.

Es poco frecuente que un tumor contenga más de una mutación. En estos casos, el informe muestra el estado de BRAF como "Mutation Detected" (Mutación detectada); sin embargo, todas las mutaciones positivas se incluirán en la lista con el indicador de advertencia "SAMPLE_POSITIVE_AND_UNCLASSIFIABLE".

Guía de resolución de problemas

Esta guía de resolución de problemas puede ayudarle a resolver cualquier problema que pueda surgir. Para obtener más información, también puede consultar la página de preguntas frecuentes (Frequently Asked Questions) de nuestro Centro de servicio técnico: <u>www.qiagen.com/FAQ/FAQList.aspx</u>. Los científicos del servicio técnico de QIAGEN se encargarán de responder cualquier pregunta que tenga sobre la información y los protocolos de este manual, así como sobre las tecnologías para la preparación de muestras y ensayos de biología molecular (encontrará la información de contacto en la contraportada o en <u>www.qiagen.com</u>).

Resultados no válidos

- a) No se han cumplido las condiciones de almacenamiento indicadas en el apartado "Almacenamiento y manipulación de reactivos" (página 12) para uno o más componentes.
- b) El kit *therascreen* BRAF CE RGQ PCR está caducado.

Comentarios y sugerencias

Compruebe las condiciones de almacenamiento y la fecha de caducidad (consulte la etiqueta) de la caja y, si es necesario, utilice un kit nuevo.

Compruebe las condiciones de almacenamiento y la fecha de caducidad (consulte la etiqueta del kit) de la caja y, si es necesario, utilice un kit *therascreen* BRAF RGQ PCR nuevo.

Indicadores del software *therascreen* BRAF Assay Package

La tabla 4 recopila los posibles indicadores que puede generar el software *therascreen* BRAF Assay Package, su significado y las acciones que deben llevarse a cabo.

Indicador	Significado	Acción
PC_CTRL_ASSAY_ FAIL	Serie de PCR no válida: el valor de C _T de FAM está fuera del intervalo para el control positivo de la reacción para control.	Repita toda la serie de PCR.
PC_CTRL_INVALID_ DATA	Serie de PCR no válida: no se pueden interpretar los datos de fluorescencia del control positivo (reacción para control).	Repita toda la serie de PCR.
PC_MUTATION_ ASSAY_FAIL	Serie de PCR no válida: el valor de C⊺ de FAM está fuera del intervalo de una o más reacciones para mutación.	Repita toda la serie de PCR.
PC_MUTATION_ INVALID_DATA	Serie de PCR no válida: no se pueden interpretar los datos de fluorescencia del control positivo (reacción para mutación).	Repita toda la serie de PCR.
NTC_INVALID_ DATA	Serie de PCR no válida: no se pueden interpretar los datos de fluorescencia para el control negativo.	Repita toda la serie de PCR.

Tabla 4. Indicadores del software	therascreen BRAF Assay Package
-----------------------------------	--------------------------------

Indicador	Significado	Acción
NTC_ASSAY_CT_ INVALID	Serie de PCR no válida: valor de FAM no válido (inferior al límite) para el control negativo.	Repita toda la serie de PCR.
NTC_INT_CTRL_ FAIL	Serie de PCR no válida: control interno por encima del intervalo para el control negativo.	Repita toda la serie de PCR.
NTC_INT_CTRL_ EARLY_CT	Serie de PCR no válida: control interno por debajo del intervalo para el control negativo.	Repita toda la serie de PCR.
SAMPLE_CTRL_ INVALID_DATA	Muestra no válida: no se pueden interpretar los datos de fluorescencia para el control de la muestra.	Configure una PCR nueva para repetir las muestras relevantes.
SAMPLE_CTRL_ HIGH_CONC	Muestra no válida: valor de C⊺ de FAM demasiado bajo para el control de la muestra.	Diluya la muestra para aumentar el valor de C _T del control. Calcule la dilución teniendo en cuenta que una dilución 1:1 con el agua suministrada con el kit permite aumentar el valor de C _T en 1,0; cuando haya diluido la muestra, configure una nueva serie de PCR para repetir la muestra.
SAMPLE_CTRL_ LOW_CONC	Muestra válida: concentración baja para el control de la muestra (advertencia, no error).	No se requiere ninguna acción.

Indicador	Significado	Acción
SAMPLE_CTRL_FAIL	Muestra no válida: valor de CT de FAM demasiado alto para la reacción para control de la muestra.	Configure una nueva serie de PCR para repetir la muestra. Si el resultado sigue siendo no válido al repetir la serie de PCR, extraiga la muestra de una sección FFPE nueva. Configure una nueva serie de PCR para analizar la nueva extracción. Si el resultado sigue siendo no válido, vuelva a analizar la segunda extracción. Si la muestra no genera un resultado válido al finalizar esta serie, se asignará a la muestra un estado mutacional indeterminado y no se llevará a cabo ningún otro análisis.

Indicador	Significado	Acción
SAMPLE_CTRL_ INT_CTRL_EARLY_ CT	Muestra no válida: valor de C _T de HEX demasiado bajo para la muestra (control interno).	Configure una nueva serie de PCR para repetir la muestra. Si el resultado sigue siendo no válido al repetir la serie de PCR, extraiga la muestra de una sección FFPE nueva. Configure una nueva serie de PCR para analizar la nueva extracción. Si el resultado sigue siendo no válido, vuelva a analizar la segunda extracción. Si la muestra no genera un resultado válido al finalizar esta serie, se asignará a la muestra un estado mutacional indeterminado y no se llevará a cabo ningún otro análisis.
SAMPLE_CTRL_ INT_CTRL_FAIL	Valor de CT demasiado alto (o ausencia de CT) para el control interno (HEX) y valor de CT demasiado alto (o ausencia de CT) para el ensayo de control (FAM).	Configure una nueva serie de PCR para repetir la muestra. Si el resultado sigue siendo no válido al repetir la serie de PCR, extraiga la muestra de una sección FFPE nueva. Configure una nueva serie de PCR para analizar la nueva extracción. Si el resultado sigue siendo no válido, vuelva a analizar la segunda extracción. Si la muestra no genera un resultado válido al finalizar esta serie, se asignará a la muestra un estado mutacional indeterminado y no se llevará a cabo ningún otro análisis.

Indicador	Significado	Acción
SAMPLE_INT_ CTRL_FAIL	Valor de C⊺ demasiado alto (o ausencia de CŢ) para el control interno (HEX) y ausencia de CŢ	Si el estado de la muestra es "mutation detected" (mutación detectada), no es preciso realizar ninguna acción.
	para el ensayo de mutación (FAM).	Si el estado de la muestra es "invalid" (no válido), configure una nueva serie de PCR para repetir la muestra.
		Nota: si el error del control interno se debe a una inhi- bición de PCR, diluir la muestra podría reducir el efecto de los inhibidores, pero debe tenerse en cuenta que esto también diluiría el ADN objetivo. El kit incluye un tubo de agua para la dilución de la muestra (Dil.).
		Si el resultado sigue siendo "invalid" (no válido) al repetir la serie de PCR, extraiga la muestra de una sección FFPE nueva. Configure una nueva serie de PCR para analizar la nueva extracción. Si el resultado sigue siendo no válido, vuelva a analizar la segunda extracción. Si la muestra no genera un resul- tado válido al finalizar esta serie, se asignará a la muestra un estado mutacional indeterminado y no se llevará a cabo ningún otro análisis.

Tabla 4 (continuación)

Indicador	Significado	Acción
SAMPLE_INT_ CTRL_EARLY_CT	Tubo para mutación no válido: el valor de C⊺ de HEX es demasiado bajo para la muestra (control interno).	Si el estado válido de la muestra es "mutation detected" (mutación detectada), no es preciso realizar ninguna acción.
		Si el estado de la muestra es "invalid" (no válido), confi- gure una nueva serie de PCR para repetir la muestra. Si el resultado sigue siendo no válido al repetir la serie de PCR, extraiga la muestra de una sección FFPE nueva. Configure una nueva serie de PCR para analizar la nueva extracción. Si el resultado sigue siendo no válido, vuelva a analizar la segunda extracción. Si la muestra no genera un resultado válido al finalizar esta serie, se asignará a la muestra un estado mutacional indeterminado y no se llevará a cabo ningún otro análisis.

Indicador	Significado	Acción
SAMPLE_INVALID_ DATA	Tubo para mutación no válido: no se pueden interpretar los datos de fluorescencia para el control interno.	Si el estado válido de la muestra es "mutation detected" (mutación detectada), no es preciso realizar ninguna acción.
		Si el estado de la muestra es "invalid" (no válido), configure una nueva serie de PCR para repetir la muestra. Si el resultado sigue siendo no válido al repetir la serie de PCR, extraiga la muestra de una sección FFPE nueva. Configure una nueva serie de PCR para analizar la nueva extracción. Si el resultado sigue siendo no válido, vuelva a analizar la segunda extracción. Si la muestra no genera un resultado válido al finalizar esta serie, se asignará a la muestra un estado mutacional indeterminado y no se llevará a cabo ningún otro análisis.

Indicador	Significado	Acción
SAMPLE_ MUTATION_ EARLY_DELTA_CT	Tubo para mutación no válido: el valor de C⊺ de FAM es demasiado bajo para la muestra.	Si el estado válido de la muestra es "mutation detected" (mutación detectada), no es preciso realizar ninguna acción.
		Si el estado de la muestra es "invalid" (no válido), configure una nueva serie de PCR para repetir la muestra. Si el resultado sigue siendo no válido al repetir la serie de PCR, extraiga la muestra de una sección FFPE nueva. Configure una nueva serie de PCR para analizar la nueva extracción. Si el resultado sigue siendo no válido, vuelva a analizar la segunda extracción. Si la muestra no genera un resultado válido al finalizar esta serie, se asignará a la muestra un estado mutacional indeterminado y no se llevará a cabo ningún otro análisis.

Indicador	Significado	Acción
SAMPLE_POSITIVE_ AND_INVALID	Resultado válido: uno o más tubos de mutación de la muestra son válidos y positivos, a la vez que uno o más tubos de mutación de la misma muestra no son válidos (se genera una advertencia, no un error).	No se requiere ninguna acción.
	La muestra se considera "mutation detected" (mutación detectada), ya que existe una mutación. No obstante, es posible que la mutación específica que se muestra en el informe no represente la mutación real presente debido a la reactividad cruzada de los ensayos. Por lo tanto, la muestra solo se debe identificar como "mutation detected" (mutación detectada).	
SAMPLE_POSITIVE_ AND_ UNCLASSIFIABLE	Resultado válido: más de un tubo de mutación es válido para la misma muestra. La combinación no es compatible con los patrones de reactividad cruzada previstos. Consulte la tabla 8. Si bien es poco frecuente, la muestra puede contener más de una mutación.	No se requiere ninguna acción.

Control de calidad

De acuerdo con el sistema de gestión de calidad con certificación ISO de QIAGEN, cada lote del kit *therascreen* BRAF RGQ PCR se analiza en cuanto a las especificaciones predeterminadas para garantizar la uniformidad de la calidad de los productos.

Limitaciones

Los resultados del producto deben interpretarse dentro del contexto de todos los hallazgos clínicos o de laboratorio y no han de utilizarse independientemente para diagnóstico.

Los estudios de verificación se han realizado con ayuda de ADN humano extraído de muestras tumorales fijadas en formalina e incluidas en parafina y estándares sintéticos adecuados para estos estudios.

El producto ha sido verificado con el kit QIAamp DNA FFPE Tissue de QIAGEN.

El producto es para uso exclusivo en equipos Rotor-Gene Q MDx.

Es preciso ceñirse estrictamente a las instrucciones indicadas en el *Manual del kit* therascreen *BRAF RGQ PCR* para obtener resultados óptimos. No se recomienda la dilución de reactivos distintos a los descritos en este manual. De lo contrario, el rendimiento se verá disminuido.

Es importante que la cantidad y calidad del ADN de la muestra se evalúe antes de realizar el análisis de la muestra con el kit *therascreen* BRAF RGQ PCR. La mezcla de control adicional (Ctrl) se suministra para determinar si el valor de C_T es aceptable para el ensayo. Las lecturas de absorbancia no deben utilizarse, puesto que no correlacionan los valores de C_T en las muestras de ADN fragmentadas.

Debe prestar especial atención a las fechas de caducidad y condiciones de almacenamiento impresas en las cajas y etiquetas de todos los componentes. No utilice componentes caducados o mal almacenados.

Características de rendimiento

Límite de blanco (LOB), intervalo de funcionamiento y valores de corte

Se analizaron un total de 143 muestras de FFPE en un estudio que sigue los requerimientos de NCCLS EP17-A (2004) para determinar el LOB y los valores de corte para cada ensayo de mutación. También se determinó el intervalo de funcionamiento para en ensayo de control. Los valores de corte se establecieron tal y como se indica en la tabla 5.

	Análisis de mutación (∆Cī)			
	V600E/Ec	V600D	V600K	V600R
Valor de corte (∆C⊺)	≤7,0	≤ 6,9	≤ 6,0	≤7,0

Tabla 5. Valores de corte establecidos para cada ensayo de mutación

El intervalo de C_{T} de la reacción de control se estableció entre 21,95 y 32,00 de $C_{\text{T}}.$

Los valores de corte y el intervalo de funcionamiento del ensayo se verificaron mediante estándares y 102 muestras de FFPE adicionales (exclusivas). Durante la verificación, se estudió la capacidad de los valores de corte para distinguir la mutación correcta en un entorno de ADN nativo mediante la valoración de cada ensayo con un nivel alto de introducción de ADN genómico y un nivel alto de introducción de mutación (consulte el apartado "Reactividad cruzada" en la página 54). También se estudió el impacto del nivel de ADN introducido sobre la mutación (consulte el apartado "Impacto del ADN introducido sobre los valores de ΔC_T " en la página 53).

Exactitud: Comparación con el método de referencia analítico

Mediante un estudio, se demostró la concordancia del estado de mutación del kit *therascreen* BRAF RGQ PCR en relación con la secuenciación bidireccional de Sanger. En dicho estudio, se analizaron 126 muestras de FFPE con mediciones estadísticas de acuerdo/desacuerdo del requerimiento EP12-A2 del CLSI (2008). Se obtuvieron resultados válidos para 102 de las muestras de FFPE, tanto para el kit *therascreen* BRAF RGQ PCR como para la secuenciación bidireccional de Sanger. Se utilizó el método Pyrosequencing[®] para confirmar el estado de la mutación cuando el estado de mutación de la muestra no coincidía con el acuerdo entre la secuenciación bidireccional de Sanger y el kit *therascreen* BRAF RGQ PCR.

La Tabla 6 indica el análisis de acuerdo entre el kit *therascreen* BRAF RGQ PCR y la secuenciación.

_	Medida de acuerdo	Frecuencia (%)
	Concordancia global	96,08
Puntuación	Concordancia positiva	100,00
	Concordancia negativa	95,29

Tabla 6. Análisis del grado de concordancia

La frecuencia de acuerdo negativo se debe a la detección de mutación en 4 muestras denominadas nativas por la secuenciación y positivas a la mutación V600E/Ec por el kit *therascreen* BRAF RGQ PCR. Esto es debido a la mayor sensibilidad de las tecnologías Scorpions y ARMS.

Impacto del ADN introducido sobre los valores de ΔC_T

Se evaluó el impacto de los niveles totales de ADN introducido en la determinación del estado de mutación con el kit *therascreen* BRAF RGQ PCR como parte del estudio de verificación de los valores de corte y el intervalo de funcionamiento del ensayo. Se pretendía verificar que las mutaciones detectadas por el kit *therascreen* BRAF RGQ PCR coincidían en niveles distintos de ADN introducidos en el intervalo de funcionamiento.

Se prepararon estándares de mutación con porcentaje alto, medio y bajo de mutación (100%, 50% y 3 × LOD%, respectivamente) en un entorno de ADN nativo con niveles de introducción de ADN alto, medio y bajo. Por lo tanto, se analizaron un total de 9 estándares de mutación para cada ensayo de mutación. En la tabla 7 se muestran los resultados de todos los ensayos.

Las diferencias estimadas en la media de ΔC_T entre cada par de niveles de ADN introducidos, tal como se estimaron a partir del análisis de regresión lineal, se encontraron todas entre ±1 C_T. Por lo tanto, los 4 ensayos de mutación se consideraron equivalentes a niveles de introducción de ADN altos, medios y bajos.

Ensayo	Parámetro (nivel de introducción de ADN)	Diferencia estimada (∆Cī)	Intervalo de confianza del 95% (inferior, superior)
V600E (E)	Alto – Medio	0,56	0,22; 0,90
V600E (E)	Bajo – Medio	0,01	-0,33; 0,35
V600E (Ec)	Alto – Medio	0,48	0,12; 0,84
V600E (Ec)	Bajo – Medio	0,26	-0,10; 0,62
V600D	Alto – Medio	-0,32	-0,58; -0,06
V600D	Bajo – Medio	-0,43	-0,69; -0,17
V600K	Alto – Medio	0,10	-0,10; 0,30
V600K	Bajo – Medio	-0,33	-0,53; -0,13
V600R	Alto – Medio	-0,12	-0,28; 0,04
V600R	Bajo – Medio	-0,62	-0,78; -0,46

Tabla 7. Diferencias estimadas entre niveles de introducción de ADN

Reactividad cruzada

Se analizaron estándares con un nivel alto de ADN introducido y un nivel alto de contenido de mutación (100%) para evaluar el potencial de reactividad cruzada de cada ensayo. Los resultados de reactividad cruzada permitieron la compilación de una tabla lógica de estado de la mutación, tal como se muestra en la tabla 8. El software BRAF CE Assay Package utiliza la lógica de la reactividad cruzada para determinar el estado de mutación.

V600E/Ec	V600D	V600K	V600R	Estado de la mutación
Positivo	Negativo	Negativo	Negativo	Positivo para V600E o V600Ec
Positivo	Negativo	Positivo	Negativo	Positivo para V600Ec o V600K
Positivo	Positivo	Negativo	Negativo	Positivo para V600D
Negativo	Positivo	Negativo	Negativo	Positivo para V600D
Negativo	Negativo	Positivo	Negativo	Positivo para V600K
Negativo	Negativo	Negativo	Positivo	Positivo para V600R

Tabla 8. Nomenclatura del estado de mutación de la muestra

Valores del límite de detección (LOD)

Se realizó un estudio para determinar el LOD de cada una de las 4 reacciones específicas de las mutaciones incorporadas en el kit *therascreen* BRAF RGQ PCR. En este estudio, se definió el LOD como la cantidad más baja de ADN mutante en un entorno de ADN nativo a la que una muestra mutante proporcionará resultados positivos para la mutación en el 95% de los resultados de las pruebas (C₉₅).

Para determinar el LOD de cada ensayo, se prepararon estándares de mutación de distintos porcentajes con un nivel medio de ADN introducido y se analizaron con el kit *therascreen* BRAF RGQ PCR. El LOD de cada ensayo se calculó por regresión logística. Para verificar el LOD de cada ensayo, se prepararon estándares de mutación en el LOD determinado. Se analizaron sesenta réplicas y se verificó la tasa de pruebas positivas.

El LOD verificado con un nivel medio de ADN introducido se muestra en la tabla 9. Con niveles más altos de ADN introducido, se espera que los valores de LOD sean más bajos que los valores indicados en la tabla 9.

Ensayo (mutación)*	LOD C95 en nivel medio de ADN introducido (porcentaje de ADN mutante en ADN nativo)
V600E (E)	1,82%
V600E (Ec)	4,31%
V600D	3,19%
V600K	4,34%
V600R	4,85%

Tabla 9. Valores de LOD para cada ensayo de mutación (nivel de introducción medio)

* El límite de las detecciones para el ensayo V600E se calculó para las mutaciones V600E y V600Ec.

Efecto de la melanina en el rendimiento del kit

El objetivo de este estudio consistía en evaluar el impacto de la melanina, un inhibidor conocido de la PCR presente en las muestras de melanoma, en el rendimiento del kit *therascreen* BRAF RGQ PCR. Para ello, se añadió melanina directamente a muestras de ADN antes de analizarlas con el kit *therascreen* BRAF RGQ PCR en una variedad de concentraciones (0-250 ng/reacción). A continuación, se valoró el efecto en los valores de ΔC_T y en el estado de mutación de las muestras analizadas.

Los resultados revelaron que una concentración baja de melanina no tenía efecto en el valor de ΔC_T y un efecto mínimo en el de ΔC_T a niveles medios de concentración de melanina. Por lo tanto, en niveles de concentración bajos y medios, puede determinarse que la melanina no afectó la capacidad de los ensayos para detectar mutaciones. A 180 ng/reacción el control interno falló, lo que indica la presencia de inhibidor y, por tanto, se permite la detección de inhibidores antes de que la identificación de mutaciones se vea afectada.

Las concentraciones de melanina que se suelen encontrar en el uso normal no interfieren con la capacidad del kit *therascreen* BRAF RGQ PCR para distinguir entre muestras positivas y negativas a la mutación.

En la tabla 10 encontrará un resumen de los resultados.

Concentración de melanina (ng/reacción)	Cambio en ∆Cī	Estado del control interno (correcto/incorrecto)
0	0	Correcto
60	-0,20	Correcto
100	-0,61	Correcto
150	-1,21	Correcto
180	-2,15	Incorrecto

Tabla 10. Cantidad de melanina analizada en cada ensayo

Repetibilidad

Se implementó un modelo de estudio matricial para variar el usuario, el día, la configuración de la placa y el equipo a fin de determinar la precisión del ensayo dentro de la misma serie analítica y entre series distintas. La repetibilidad se demostró con una introducción de ADN de nivel bajo de 3 × LOD para los ensayos de mutación. Además, se determinó el porcentaje de identificación de mutaciones positivas para cada ensayo cuando se analizaron con su estándar de mutación específico. En cada ensayo de mutación se obtuvieron el 100% de identificaciones de mutaciones positivas.

Los valores de la precisión se exponen en la tabla 11.

Reproducibilidad

Se implementó un modelo de estudio matricial para valorar la reproducibilidad mediante el análisis de estándares en 3 laboratorios (sitios), con 3 lotes de kits *therascreen* BRAF RGQ PCR (2 en cada sitio), usando 2 usuarios por sitio, en 2 equipos por sitio, durante 4 días alternos. La reproducibilidad se demostró con un nivel de mutación bajo (3 × LOD) para ensayos de mutación y un nivel bajo de ADN nativo introducido para el ensayo de control. La precisión de cada ensayo se calculó en los 3 sitios, junto con estimaciones de precisión del 95% (tabla 12).

Ensayo	Precisión (entre series analíticas)	Intervalo de confianza del 95% (inferior, superior)	Precisión (dentro de la serie analítica)	Intervalo de confianza del 95% (inferior, superior)
Control	0,30	0,25; 0,39	0,16	0,13; 0,20
V600E (E)	0,74	0,61; 0,94	0,57	0,46; 0,74
V600E (Ec)	0,79	0,64; 1,01	0,76	0,62; 0,99
V600D	0,47	0,38; 0,60	0,46	0,38; 0,60
V600K	0,37	0,31; 0,48	0,37	0,30; 0,49
V600R	0,44	0,36; 0,56	0,44	0,36; 0,58

Tabla 11. Estimaciones de precisión de la repetibilidad

Tabla 12. Estimaciones de precisión de la reproducibilidad

Ensayo	Precisión	Intervalo de confianza del 95% (inferior, superior)
Control	0,54	0,42; 0,76
V600E (E)	0,87	0,67; 1,22
V600E (Ec)	0,86	0,66; 1,21
V600D	0,80	0,62; 1,14
V600K	0,61	0,47; 0,86
V600R	0,63	0,49; 0,89

Símbolos

\\$ <24>	Contiene suficientes reactivos para <24> reacciones
\Box	Fecha de caducidad
IVD	Dispositivo médico para diagnóstico in vitro
REF	Número de referencia
LOT	Número de lote
MAT	Número de material
COMP	Componentes
CONT	Contenido
NUM	Número
GTIN	Número mundial de artículo comercial
1	Limitación de temperatura
	Fabricante
	Consultar las instrucciones de uso
紊	Mantener alejado de la luz solar
Â	Precaución

Apéndice I: protocolo manual del kit *therascreen* BRAF RGQ PCR

Este apartado contiene instrucciones para utilizar el kit *therascreen* BRAF RGQ PCR con el software RGQ, versión 2.3 en el modo abierto (es decir, sin utilizar el software BRAF Assay Package).

Información general

- Para obtener una lista de los materiales necesarios, consulte la página 9.
- Para obtener instrucciones sobre la preparación y la disposición de las muestras, consulte los apartados "Protocolo: valoración de las muestras", en la página 15, y "Protocolo: detección de mutaciones de BRAF", en la página 27.

Protocolo: creación de un perfil de temperatura

Antes de empezar, cree un perfil de temperatura para el análisis de BRAF. Los parámetros de ciclado son los mismos para la valoración de muestras y la valoración de la mutación.

Procedimiento

En resumen, los parámetros de ciclo son los siguientes:

			Obicilción de dalos
1	95 °C	15 minutos	Ninguno
10	95 °C	30 segundos	Ninguno
40	60 °C	60 segundos	Verde y amarillo

Tabla 13. Parámetros de ciclo

- 1. Haga doble clic en el icono del software Rotor-Gene Q, versión 2.3, situado en el escritorio del PC conectado al equipo Rotor-Gene Q MDx.
- Para crear un nuevo molde, seleccione "Empty Run" (Serie vacía) y haga clic en "New" (Nueva) para acceder al "New Run Wizard" (Asistente para series nuevas).

 Seleccione "72-Well Rotor" (Rotor de 72 pocillos) como tipo de rotor. Confirme que el anillo de fijación esté sujeto y marque la casilla "Locking Ring Attached" (Anillo de fijación sujeto). Haga clic en "Next" (Siguiente) (ilustración 21).

Ilustración 21. Cuadro de diálogo "New Run Wizard" (Asistente para series nuevas) (1 = "Rotor Type" [Tipo de rotor], 2 = Casilla "Locking Ring Attached" [Anillo de fijación sujeto], 3 = Botón "Next" [Siguiente])

 Introduzca el nombre del usuario. Añada las notas que desee e introduzca el volumen de reacción como 25. Asegúrese de que "Sample Layout" (Disposición de muestras) indica "1, 2, 3...". Haga clic en "Next" (Siguiente) (ilustración 22).

Ilustración 22. Introducción del nombre del usuario y los volúmenes de reacción (1 = Campo "Operator" [Operador], 2 = Campo "Notes" [Notas], 3 = Campo "Reaction Volume" [Volumen de reacción], 4 = Campo "Sample Layout" [Disposición de muestras], 5 = Botón "Next" [Siguiente]) Haga clic en el botón "Edit Profile" (Editar perfil) situado en el cuadro de diálogo "New Run Wizard" (Asistente para series nuevas) (ilustración 23) y revise los parámetros de la serie analítica según los pasos siguientes.

Edit Profi	le					Click this button to edit the profile shown in the box above.
Channel Se Name Green Yellow Orange Red Crimson HRM	Source 470nm 530nm 585nm 625nm 680nm 460nm	Detector 510nm 555nm 610nm 660nm 710hp 510nm	Gain 5 5 5 5 7 7	1	Create New Edit Edit Gain Remove Reset Defaults	
Gain Opti Skip W	misation	 << <u>B</u> ack	1	Next >>	 	

Ilustración 23. Edición del perfil (1)

6. Haga clic en el botón "Insert after" (Insertar después) y seleccione "New Hold at Temperature" (Nueva fase de temperatura) (ilustración 24).

Ilustración 24. Inserción de un paso de incubación inicial (1 = Botón "Insert after" [Insertar después], 2 = "New Hold at Temperature" [Nueva fase de temperatura])

7. Cambie el valor de "Hold Temperature" (Mantener temperatura) a 95 °C y "Hold Time" (Mantener tiempo) en "15 mins 0 secs" (15 min 0 s). Haga clic en el botón "Insert After" (Insertar después) y seleccione "New Cycling" (Ciclos nuevos) (ilustración 25).

Ilustración 25. Paso de incubación inicial a 95 °**C** (1 = Botones "Hold Temperature" [Mantener temperatura] y "Hold Time" [Mantener tiempo], 2 = Botón "Insert after" [Insertar después], 3 = "New Cycling" [Ciclos nuevos])

8. Cambie el número de repeticiones de ciclo a 40. Seleccione el primer paso y establezca el valor en "95°C for 30 secs" (95 °C para 30 s) (ilustración 26).

Ilustración 26. Paso de ciclado a 95 °C (1 = Casilla de repeticiones de ciclo, 2 = Ajuste de temperatura de primer paso, 3 = Ajuste de tiempo de primer paso)

 Seleccione el segundo paso y establezca el valor en "60°C for 60 secs" (60 °C para 60 s). Para activar la obtención de datos durante este paso, seleccione el botón "Not Acquiring" (No adquirir) (ilustración 27).

Ilustración 27. Paso de ciclado a 60 °C (1 = Ajuste de temperatura y tiempo de segundo paso, 2 = Botón "Not Acquiring" [No adquirir])

 Establezca "Green" (Verde) y "Yellow" (Amarillo) como canales de obtención. Para ello, seleccione el botón ">" para transferirlos de la lista "Available Channels" (Canales disponibles). Haga clic en "OK" (Aceptar) (ilustración 28).

Ilustración 28. Adquisición en el paso de ciclado a 60 °C (1 = Canales seleccionados, 2 = Botón "OK" [Aceptar])

 Seleccione el tercer paso y elimínelo mediante el botón "-". Haga clic en "OK" (Aceptar) (ilustración 29).

Ilustración 29. Eliminación del paso de extensión (1 = Tercer paso, 2 = Botón para eliminar, 3 = Botón "OK" [Aceptar])

12. En el cuadro de diálogo siguiente, haga clic en el botón "Gain Optimisation" (Optimización de ganancia) (ilustración 30).

500-0					the wizard. For hel on an item, hover your mouse over th item for help. You can also click on a combo box to disp help about its available settings.
Channel Sel Name Green Yellow Orange Red Crimson HRM	tup : Source 470nm 530nm 585nm 625nm 680nm 460nm	Detector 510nm 555nm 610nm 660nm 710hp 510nm	Gain 5 5 5 5 7 7 7	Create New Edit Edit Gain Remove Reset Defaults	

Ilustración 30. Optimización de la ganancia (1)

 Haga clic en el botón "Optimise Acquiring" (Optimizar adquisición). Para cada canal, se muestra la configuración de canal. Acepte los valores predeterminados haciendo clic en "OK" (Aceptar) para ambos canales (ilustración 31).

So	different gain levels until it finds one at which the fluorescence levels are acceptable. The range of fluorescence you are looking for depends on the chemistry you are performing.	
	Set temperature to 60 🚽 degrees.	
Perfor Perfor Channel S	Auto-Gain Optimisation Channel Settings Channel Settings : Channel : Green Tube Position : 1 + Target Sample Range : 5 + Fl up to 10 + FL Acceptable Gain Range: 10 + to 10 +	Add
	OK Cancel Help	

Ilustración 31. Optimización de la ganancia automática para el canal verde

(1 = Botón "Optimise Acquiring" [Optimizar adquisición], 2 = Botón "OK" [Aceptar])

14. Active la casilla "Perform Optimisation before 1st Acquisition" (Ejecutar la optimización antes de la primera adquisición) y, a continuación, haga clic en el botón "Close" (Cerrar) para volver al asistente (ilustración 32).

2/3	Auto-Gain 0 different gai acceptable. chemistry yo Set tempera	ptimisation will re n levels until it fin The range of flu u are performing. ture to 60	ad the fluoresenc ds one at which th prescence you are degrees.	e on the inse le fluoresce looking for	erted sample a nce levels are depends on ti	t he
Optin	nise All	Optimise Acquirin	al			
Perfor	m Optimisation m Optimisation	Before 1st Acqu At 60 Degrees A	iisition At Beginning Of Ru	m		
Channel S	Settings :					
					•	<u></u>
Name	Tube Positio	n Min Reading	Max Reading	Min Gain	Max Gain	<u>E</u> dit
Green	1	5FI	10FI	-10	10	<u>R</u> emove
rellow	I	5FI	10F1	.10	10	Remove All

Ilustración 32. Selección de los canales verde y amarillo (1 = Casilla de verificación "Perform Optimisation Before 1st Acquisition" [Ejecutar la optimización antes de la primera adquisición], 2 = Botón "Close" [Cerrar])

15. Haga clic en "Next" (Siguiente) para guardar el molde en una ubicación apropiada. Para ello, seleccione "Save Template" (Guardar molde).

Procedimiento (manual)

Protocolo: valoración de las muestras (manual)

Este protocolo se utiliza para valorar el ADN total amplificable de las muestras y debería aplicarse antes de realizar el análisis de mutación de BRAF.

- Prepare las muestras tal como se describe en el apartado "Protocolo: valoración de las muestras", en la página 15.
- Configure la serie de PCR en el equipo Rotor-Gene Q MDx tal como se describe en el apartado "Protocolo: configuración de therascreen BRAF PCR RGQ", en la página 74.
- Una vez finalizada la serie, analice los datos según las instrucciones del apartado "Análisis de los datos de valoración de las muestras", en la página 80.
Protocolo: detección de mutaciones de BRAF (manual)

Cuando una muestra es correcta según la evaluación de muestras, se puede analizar para detectar mutaciones de BRAF.

- Prepare las muestras tal como se describe en el apartado "Protocolo: detección de mutaciones de BRAF", en la página 27.
- Configure la serie de PCR en el equipo Rotor-Gene Q MDx tal como se describe en el apartado "Protocolo: configuración de therascreen BRAF PCR RGQ", en la página 74.
- Una vez finalizada la serie, analice los datos según las instrucciones del apartado "Análisis de los datos de la detección de mutaciones del gen BRAF", en la página 81.

Protocolo: configuración de therascreen BRAF PCR RGQ

1. Abra el software Rotor-Gene Q (2.3) y acceda al perfil de temperatura apropiado (archivo .ret).

Para obtener instrucciones sobre cómo crear el perfil de temperatura y comprobar los parámetros de la serie analítica, consulte el apartado "Protocolo: creación de un perfil de temperatura", en la página 60.

2. Asegúrese de seleccionar el rotor correcto y marque la casilla para confirmar que el anillo de fijación esté sujeto. Haga clic en "Next" (Siguiente) (ilustración 33).

Ilustración 33. Cuadro de diálogo "New Run Wizard" (Asistente para series nuevas) y pantalla de inicio (1 = "Rotor Type" [Tipo de rotor], 2 = Casilla "Locking Ring Attached" [Anillo de fijación sujeto], 3 = Botón "Next" [Siguiente])

 Introduzca el nombre del usuario. Añada las notas que desee y compruebe que el volumen de reacción esté configurado en 25 y que "Sample Layout" (Disposición de muestras) indique "1, 2, 3...". Haga clic en "Next" (Siguiente) (ilustración 34).

New Run Wizard	$\overline{\mathbf{X}}$
This screen displays miscellaneous options for the run. Complete the fields, clicking Next when you are ready to move to the next page.	
Operator : NAME on an item, hover the your mouse over the your mouse over your mouse o	
Notes : item for help. You can also click on a combo box to displ help about its available settings.	ay
Reaction Volume (µL):	<mark></mark> 2
Sample Layout : 1, 2, 3	
	₂
Skip Wizard (<u>Back</u> <u>Next</u>)	J

Ilustración 34. Pantalla de opciones "New Run Wizard" (Asistente para series nuevas) (1 = Campos "Operator" [Operador] y "Notes" [Notas], 2 = Campos "Reaction Volume" [Volumen de reacción] y "Sample Layout" [Disposición de muestras], 3 = Botón "Next" [Siguiente])

4. La siguiente ventana permite editar el perfil de temperatura. No es necesario editar, porque el perfil de temperatura ya se ha creado según las instrucciones del apartado "Protocolo: creación de un perfil de temperatura", en la página 60. Haga clic en "Next" (Siguiente) (ilustración 35).

Ilustración 35. Cuadro de diálogo "New Run Wizard" (Asistente para series nuevas) y pantalla de edición de temperatura (1 = Botón "Next" [Siguiente])

5. Compruebe el resumen y haga clic en "Start Run" (Iniciar la serie) para guardar el archivo de análisis y comenzar la serie (ilustración 36).

New Run Wizard	<u> </u>	
Summary :		
Setting Green Gain Yellow Gain Auto-Gain Optimisation Rotor Sample Layout Reaction Volume (in microliters)	Value 5 5 Before First Acquisition 72-Well Rotor 1, 2, 3, 25	
Once you've confirmed that your run settings are correct, click Start Run to begin the run. Click Save Template to save settings for future runs.		
Skip Wizard << <u>B</u> ack		

Ilustración 36. Cuadro de diálogo "New Run Wizard" (Asistente para series nuevas) y pantalla de resumen (1 = Botón "Start Run" [Iniciar la serie])

6. Una vez iniciada la serie, aparece una nueva ventana en la que puede introducir nombres de muestra en ese momento o bien hacer clic en "Finish" (Finalizar) e introducirlos más tarde seleccionando el botón "Sample" (Muestra) durante la ejecución de la serie o una vez completada.

Al hacer clic en "Finish and Lock Samples" (Finalizar y bloquear muestras) se evita la edición de los nombres de las muestras. El usuario debe extremar la precaución al introducir los nombres de las muestras para asegurarse de realizar correctamente las pruebas y los análisis de las muestras.

Nota: al introducir el nombre de las muestras, los pocillos vacíos deben dejarse en blanco en la columna "Name" (Nombre).

- 7. Una vez finalizada la serie, analice los datos según los apartados "Análisis de los datos de valoración de las muestras", en la página 80, o "Análisis de los datos de la detección de mutaciones del gen BRAF", en la página 81, como corresponda.
- 8. Si necesita crear informes de cuantificación, haga clic en el icono "Reports" (Informes) situado en la barra de herramientas del archivo de la serie analítica Rotor-Gene Q.

 En el explorador de informes, haga clic en "Cycling A. Green (Page 1)" (Ciclado A. Verde [página 1]) en "Report Categories" (Categorías de informes) (ilustración 37).

Ilustración 37. Explorador de informes (1 = Botón "Cycling A. Green (Page 1)" [Ciclado A. Verde (página 1)])

10. Seleccione "Quantitation (Full Report)" (Cuantificación [Informe completo]) en "Templates" (Moldes) (ilustración 38).

💼 Report Browser	
Report Categories : (General) - Quantitation - Cycling A.Green (Page 1) - Cycling A.Yellow (Page 1)	Quantitation (Concise) Quantitation (Full Report) Quantitation (Standard Report)
	<u>Show</u> Cancel

Ilustración 38. Informe de cuantificación (informe completo) (1)

- 11. Haga clic en "Show" (Mostrar) para generar el informe.
- 12. Haga clic en "Save As" (Guardar como) para guardar una versión electrónica.
- 13. Repita el procedimiento para "Cycling A. Yellow (Page 1)" (Ciclado A. Amarillo [página 1]).

Interpretación de los resultados (manual)

Una vez completada la serie de valoración o la serie del análisis de mutación, debe analizar los datos según el siguiente procedimiento.

Configuración del análisis del software

- 1. Utilice el software Rotor-Gene Q (2.3) para abrir el archivo adecuado.
- 2. Si no ha introducido el nombre de las muestras antes de realizar la serie, haga clic en "Edit Samples" (Editar muestras).
- Introduzca los nombres de las muestras en la columna "Name" (Nombre).
 Nota: deje en blanco los nombres de los pocillos vacíos.
- 4. Haga clic en "Analysis" (Análisis). En la página de análisis, haga clic en "Cycling A. Yellow" (Ciclado A. Amarillo) para ver el canal amarillo.
- Haga clic en "Named On" (Con nombre).
 Nota: esto permite asegurarse de que los pocillos vacíos no se incluyen en el análisis.
- 6. Seleccione "Dynamic tube" (Tubo dinámico).
- 7. Seleccione "Slope Correct" (Pendiente correcta).
- 8. Seleccione "Linear scale" (Escala lineal).
- 9. Seleccione "Take off Adj." (Aj. de inicio) e introduzca los valores 15,01 en la casilla superior ("If take off point was calculated before cycle" [Si el punto de inicio se calculó antes que el ciclo]) y 20,01 en la casilla inferior ("then use the following cycle and take off point" [utilice el ciclo y el punto de inicio siguientes]).
- 10. Configure el umbral en 0,05.
- 11. Configure "Eliminate Cycles before" (Eliminar ciclos antes de) en 15.
- 12. Revise los valores de CT del canal amarillo.
- 13. En la página de análisis, haga clic en "Cycling A. Green" (Ciclado A. Verde) para ver el canal verde.
- 14. Seleccione "Named On" (Con nombre).
- 15. Seleccione "Dynamic tube" (Tubo dinámico).
- 16. Seleccione "Slope Correct" (Pendiente correcta).
- 17. Seleccione "Linear scale" (Escala lineal).
- 18. Seleccione "Take off Adj." (Aj. de inicio) e introduzca los valores 15,01 en la casilla superior ("If take off point was calculated before cycle" [Si el punto de inicio se calculó antes que el ciclo]) y 20,01 en la casilla inferior ("then use the following cycle and take off point" [utilice el ciclo y el punto de inicio siguientes]).

- 19. Configure el umbral en 0,15.
- 20. Configure "Eliminate Cycles before" (Eliminar ciclos antes de) en 15.
- 21. Revise los valores de C_T del canal verde.

Análisis de los datos de valoración de las muestras

Análisis de control de la serie

Una vez finalizada la serie, debe analizar los datos tal y como se indica a continuación.

- Control negativo: para asegurarse de que el molde no está contaminado, el control sin molde no debe generar un valor de C_T en el canal verde (FAM) por debajo de 40. Para garantizar que la serie está configurada correctamente, el control sin molde debe mostrar una amplificación dentro del intervalo de 32,53 a 38,16 en el canal amarillo (HEX). Los valores especificados son los comprendidos entre estos valores (ambos incluidos).
- Control positivo: el control positivo (PC) de BRAF debe generar un valor de C_T del ensayo de control en el canal verde (FAM) de 30,37 a 36,85. Los valores especificados son los comprendidos entre estos valores (ambos incluidos). La aparición de un valor fuera de este intervalo indica un problema de configuración del ensayo y es, por lo tanto, un fallo de la serie.

No deben utilizarse los datos de las muestras si alguno de estos dos controles de análisis da error.

Siempre que ambos controles de series sean válidos, cada valor de C_T de muestra debe estar comprendido en el intervalo de 21,95 a 32,00 en el canal verde. Si la muestra se encuentra fuera de este intervalo, se proporciona la guía siguiente.

Análisis de la muestra: ensayo de control

Valor de C_T del ensayo de control de la muestra < 21,95: las muestras con un valor de C_T de < 21,95 se deben diluir, ya que este valor representa el nivel inferior del intervalo de ensayo validado. Para detectar cada mutación en un nivel bajo, las muestras sobreconcentradas se deben diluir para que se encuentren en el intervalo mencionado anteriormente, partiendo de la base de que diluir a la mitad aumentará el valor de C_T en 1. Si el valor de la muestra está cerca de 21,95, se recomienda diluir a fin de garantizar la obtención de un resultado de la serie de análisis de muestras (detección de mutaciones del gen BRAF). Es necesario diluir las muestras con el agua suministrada con el kit (agua para la dilución [Dil.]).

Valor de C_T del ensayo de control de la muestra > 32,00: se recomienda volver a extraer la muestra, ya que el ADN molde inicial presente no será suficiente para detectar todas las mutaciones con los valores de corte indicados del ensayo.

Análisis de los datos de la detección de mutaciones del gen BRAF

Análisis de control de la serie

Consulte el organigrama del análisis de control de la serie en la ilustración 39.

- Control negativo: para asegurarse de que el molde no está contaminado, el control sin molde no debe generar un valor de C_T en el canal verde (FAM) por debajo de 40. Para garantizar que la serie está configurada correctamente, el control sin molde debe mostrar una amplificación dentro del intervalo de 32,53 a 38,16 en el canal amarillo (HEX). Los valores especificados son los comprendidos entre estos valores (ambos incluidos).
- Control positivo: el control positivo (PC) de BRAF debe generar un valor de C_T para cada ensayo BRAF, tal como se muestra en la tabla 14 en el canal verde. Los valores especificados son los comprendidos entre estos valores (ambos incluidos). La aparición de un valor fuera de este intervalo indica un problema de configuración del ensayo y es, por lo tanto, un fallo de la serie.

Nota: no deben utilizarse los datos de las muestras si alguno de estos dos controles de análisis da error.

Mezcla de reacción	Muestra	Canal	Intervalo de C _T
Control	PC	Verde	30,37-36,38
V600E/Ec	PC	Verde	29,62-35,73
V600D	PC	Verde	29,75-35,79
V600K	PC	Verde	29,32-35,32
V600R	PC	Verde	29,41-35,41

Tabla 14. Intervalo de CT aceptable para controles de reacción

Ilustración 39. Organigrama del análisis de control de la serie

Análisis de la muestra — Valor de C_T del canal verde de control de la muestra

Consulte el organigrama del análisis de la muestra en la ilustración 40. Siempre que ambos controles de series sean válidos para el ensayo de control, cada valor de C_T de control de la muestra debe estar comprendido en el intervalo de 21,95-32,00 en el canal verde.

Si la muestra se encuentra fuera de este intervalo, se proporciona la guía siguiente.

- Valor de C_T del ensayo de control de la muestra < 21,95: las muestras con un valor de C_T de control < 21,95 sobrecargarán los ensayos de mutación y deben diluirse. Para detectar cada mutación en un nivel bajo, las muestras sobreconcentradas se deben diluir para que se encuentren en el intervalo mencionado anteriormente, partiendo de la base de que diluir a la mitad aumentará el valor de C_T en 1. Es necesario diluir las muestras con el agua suministrada con el kit (agua para la dilución [Dil.]).
- Valor de C_T del ensayo de control de la muestra > 32,00: se recomienda volver a extraer la muestra, ya que el ADN molde inicial presente no será suficiente para detectar todas las mutaciones con los valores de corte indicados del ensayo.

Análisis de la muestra — Valor de C₁ del canal amarillo de los ensayos de control interno de mutaciones de la muestra

Consulte el organigrama del análisis de la muestra en la ilustración 40.

Es necesario analizar todos los pocillos de cada muestra. Compruebe que cada pocillo genere una señal HEX en el canal amarillo del control interno. Existen 3 resultados posibles.

- Si el valor de C_T del control interno se incluye dentro del intervalo especificado (32,53-38,16), la amplificación del canal amarillo es positiva y válida.
- Si el valor de C_T del control interno está por encima del intervalo especificado (> 38,16), el tubo es negativo para la amplificación del canal amarillo. Si existe amplificación en el canal verde para ese tubo, la amplificación del canal amarillo es válida. Si no existe amplificación en el canal verde para ese tubo, la amplificación del canal amarillo no es válida.
- Si el valor de C_T del control interno está por debajo del intervalo especificado (< 32,53), el tubo no es válido.</p>

Si el error del control interno se debe a una inhibición de PCR, diluir la muestra podría reducir el efecto de los inhibidores, pero debe tenerse en cuenta que esto también diluiría el ADN objetivo. El kit incluye un tubo de agua para la dilución de la muestra (Dil.).

Ilustración 40. Organigrama del análisis de la muestra.

Análisis de la muestra — Valor de C₁ del canal verde de los ensayos de mutaciones de la muestra

Es necesario comparar los valores del canal verde de las 4 mezclas de reacción con los valores que se muestran en la tabla 15.

	Intervalo de C₁	
Ensayo	aceptable	Intervalo de ΔC_T
V600E/Ec	15,00-40,00	≤ 7,0
V600D	15,00-40,00	≤ 6,9
V600K	15,00-40,00	≤ 6,0
V600R	15,00-40,00	≤ 7,0

Tabla 15. Valores de reacción de mutación de muestras aceptables (canal verde)*

* Los valores aceptables son los comprendidos entre los valores mostrados (también aceptables).

- Si el valor de C_T de FAM se incluye dentro del intervalo especificado, la amplificación del canal verde es positiva.
- Si el valor de C_T del canal verde está por encima del intervalo especificado o si no existe amplificación, la amplificación del canal verde es negativa.

Proceda a calcular el valor de ∆C_T de todos los tubos de mutación que presenten amplificación de FAM positiva tal y como se indica a continuación. Es importante utilizar los valores de C_T de mutación y de control de una misma muestra.

 $\Delta C_T = C_T de mutación - C_T de control$

Compare el valor de ΔC_T de la muestra con el punto de corte del ensayo en cuestión (tabla 15). Compruebe que se aplique el punto de corte correcto para cada ensayo.

El punto de corte es el punto a partir del que una señal positiva podría ser la respuesta a una señal de fondo del primer ARMS en ADN nativo. Si el valor de ΔC_T de la muestra es superior al punto de corte, esta se considera negativa o fuera de los límites de detección del kit.

Para cada muestra, las reacciones de mutación recibirán un estado de mutación detectada, mutación no detectada o no válido según los siguientes criterios.

Mutación detectada:

La amplificación positiva del canal verde y el valor de ΔC_T son iguales al valor de corte o están por debajo de él. Si se detectan varias mutaciones, el estado de la mutación debe asignarse de acuerdo con la tabla 16.

Mutación no detectada:

La amplificación positiva del canal verde y el valor de ΔC_T están por encima del valor de corte.

La amplificación del canal verde es negativa y la amplificación del canal amarillo (control interno) es positiva.

No válido:

El canal amarillo (control interno) no es válido.

La amplificación del canal verde es negativa y la amplificación del canal amarillo es negativa.

Para conocer más detalles al respecto, consulte el organigrama de la Ilustración 40. Si una muestra es negativa para la amplificación del canal amarillo en un tubo pero positiva para la amplificación del canal verde en un tubo diferente, el resultado de mutación detectada en el tubo diferente todavía puede considerarse válido, pero puede que la mutación particular identificada no se haya asignado con fiabilidad.

Si una muestra es negativa para la amplificación del canal amarillo y positiva para la amplificación del canal verde en el mismo tubo, el resultado de mutación detectada debe considerarse válido.

Si un tubo es no válido para el canal amarillo (control interno), el resultado de dicho tubo no debe utilizarse.

Análisis de la muestra — Asignación del estado de mutación de la muestra

Tras evaluar todos los tubos de reacción de mutación, el estado de mutación de la muestra se determina tal y como se indica a continuación.

- Mutación detectada: una o más de las 4 reacciones de mutación son positivas. Si se detectan varias mutaciones, la mutación debe comunicarse según los requisitos de la tabla 16 (véase la página siguiente).
- Mutación no detectada: las 4 reacciones de mutación son negativas.
- No válido: ninguna reacción de mutación es positiva y una o más reacciones de mutación son no válidas.

V600E/Ec	V600D	V600K	V600R	Estado de la mutación
Positivo	Negativo	Negativo	Negativo	Positivo para V600E o V600Ec
Positivo	Negativo	Positivo	Negativo	Positivo para V600Ec o V600K
Positivo	Positivo	Negativo	Negativo	Positivo para V600D
Negativo	Positivo	Negativo	Negativo	Positivo para V600D
Negativo	Negativo	Positivo	Negativo	Positivo para V600K
Negativo	Negativo	Negativo	Positivo	Positivo para V600R

Tabla 16. Nomenclatura del estado de mutación de la muestra

Nota: el kit *therascreen* BRAF RGQ PCR está diseñado para detectar mutaciones en el gen BRAF en una muestra de ADN. Cuando se identifica una muestra como de mutación de BRAF detectada, solo debe indicarse una mutación específica. Si se detectan varias mutaciones, la mutación debe comunicarse según los requisitos de la tabla 16.

Entre las reacciones de mutación se produce reactividad cruzada. Por ejemplo, el ensayo V600E/Ec puede arrojar un resultado positivo si hay presente una mutación V600D, el ensayo V600E/Ec puede arrojar un resultado positivo si hay presente una mutación V600K y en ensayo V600K puede arrojar un resultado positivo si hay presente una mutación compleja V600E. Sin embargo, el estado de la mutación debe distinguirse de acuerdo con la tabla 16.

La reactividad cruzada se produce porque el primer ARMS detecta otras mutaciones con secuencia similar entre ellas. Si un segundo ensayo de mutación arroja un resultado positivo, es muy probable que se trate de reactividad cruzada. Si bien es poco frecuente, se han observado dobles mutantes.

Por lo tanto, en contadas ocasiones, pueden detectarse combinaciones de resultados positivos que no están incluidas en la tabla 16. La muestra puede seguir identificándose como mutación de BRAF detectada. Sin embargo, debido a la reactividad cruzada, no se puede distinguir una mutación en concreto. Por lo tanto, la muestra solo se debe identificar como de mutación de BRAF detectada.

Si una o más de las reacciones de mutación son no válidas pero hay una o más positivas, todavía puede identificarse la muestra como de mutación de BRAF

detectada, ya que existe una mutación. No obstante, puede que la mutación específica indicada no sea precisa y se haya obtenido como resultado de la reactividad cruzada. Por lo tanto, la muestra solo se debe identificar como de mutación de BRAF detectada.

Apéndice II: instalación del software *therascreen* BRAF Assay Package

El kit *therascreen* BRAF RGQ PCR se ha diseñado para su uso con el equipo Rotor-Gene Q MDx con un rotor de 72 pocillos. El software *therascreen* BRAF Assay Package se puede descargar en la página web de producto del kit *therascreen* BRAF RGQ PCR correspondiente, en <u>www.qiagen.com</u>. Encontrará la información de descarga en el apartado "Product Resources" (Recursos de producto), en la pestaña "Supplementary Protocols" (Protocolos complementarios). Los paquetes de ensayo también se pueden solicitar en un CD (QIAGEN, n.º de referencia 9023820).

El paquete de ensayo incluye *"therascreen* BRAF CE Sample Assessment Locked Template" y *"therascreen* BRAF CE Mutation Analysis Locked Template".

Nota: el software *therascreen* BRAF Assay Package solamente es compatible con el software Rotor-Gene Q, versión 2.3. Compruebe que se haya instalado la versión correcta del software Rotor-Gene Q antes de proceder a instalar *therascreen* BRAF Assay Package. Si utiliza un equipo Rotor-Gene Q MDx con una versión de software anterior, puede actualizarlo fácilmente descargándose la versión 2.3 del software de la página de producto de Rotor-Gene Q MDx en <u>www.qiagen.com</u>. Encontrará el nuevo software en el apartado "Product Resources" (Recursos de producto) correspondiente, en la pestaña "Operating Software" (Software operativo).

Procedimiento (descarga)

- 1. Descargue el kit *therascreen* BRAF RGQ Assay Package CE en la página web de producto del kit *therascreen* BRAF RGQ PCR correspondiente, en <u>www.qiagen.com</u>.
- 2. Abra el archivo comprimido descargado. Para ello, haga doble clic en él y extraiga el archivo que hay en su interior.
- 3. Haga doble clic en el archivo therascreen_BRAF_Assay_Package_3.1.1.exe extraído para comenzar la instalación.

Procedimiento (CD)

- 1. Solicite el CD *therascreen* BRAF RGQ Assay Package CE (QIAGEN, n.º de referencia 9023820), disponible por separado, a QIAGEN.
- 2. Introduzca el CD en la unidad correspondiente del ordenador portátil conectado al equipo Rotor-Gene Q.

- 3. Haga doble clic en el archivo therascreen_BRAF_Assay_Package_3.1.1.exe para comenzar la instalación si el CD se carga automáticamente, o bien ubique este archivo ejecutable mediante el explorador de archivos del portátil conectado.
- 4. Se abrirá el asistente para la instalación. Haga clic en "Next" (Siguiente) para continuar (ilustración 41).

Ilustración 41. Cuadro de diálogo "Setup" (Configuración) (1 = Botón "Next" [Siguiente])

5. Lea el Acuerdo de licencia del cuadro de diálogo "License Agreement" y marque la casilla "I accept the agreement" (Acepto el acuerdo) para aceptar el acuerdo. Haga clic en "Next" (Siguiente) para continuar (ilustración 42).

Ilustración 42. Cuadro de diálogo "License Agreement" (Acuerdo de licencia) (1 = Botón para aceptar, 2 = Botón "Next" [Siguiente])

6. Se iniciará automáticamente la configuración de los moldes y, cuando finalice, aparecerá el cuadro de diálogo "Setup" (Configuración). Haga clic en "Finish" (Finalizar) para salir del asistente para la configuración (ilustración 43).

Ilustración 43. Finalización del asistente para la configuración (1 = Botón "Finish" [Finalizar])

7. Reinicie el ordenador. El asistente generará automáticamente accesos directos a los moldes "therascreen BRAF CE Sample Assessment Locked Template" y "therascreen BRAF CE Mutation Analysis Locked Template" y los colocará en el escritorio.

Información de contacto

Para recibir asistencia técnica y solicitar más información, visite nuestro Centro de servicio técnico en el sitio <u>www.qiagen.com/Support</u>, llame al 00800-22-44-6000, póngase en contacto con uno de los departamentos del servicio técnico de QIAGEN o con los distribuidores locales (consulte la contraportada o visite <u>www.qiagen.com</u>).

Producto	Contenido	Referencia
therascreen BRAF RGQ PCR Kit (24)	Para 24 reacciones: ensayo de control, 4 ensayos de mutación, control positivo, <i>Taq</i> ADN polimerasa, agua para y agua para la dilución de la muestra	870211
Rotor-Gene Q y otros ac	cesorios	
Rotor-Gene Q MDx 5plex HRM Platform	Termociclador para PCR en tiempo real y analizador de melting de alta resolución (HRM) con 5 canales (verde, amarillo, naranja, rojo y carmesí) más un canal HRM, ordenador portátil, software, accesorios, 1 año de garantía en piezas y mano de obra, instalación y formación no incluidas	9002032
Rotor-Gene Q MDx 5plex HRM System	Termociclador para PCR en tiempo real y analizador de melting de alta resolución (HRM) con 5 canales (verde, amarillo, naranja, rojo y carmesí) más un canal HRM, ordenador portátil, software, accesorios, 1 año de garantía en piezas y mano de obra, instalación y formación	9002033
therascreen BRAF Assay Package CD	CD con <i>therascreen</i> BRAF CE Sample Assessment Locked Template y <i>therascreen</i> BRAF CE Mutation Analysis Locked Template	9023820
Loading Block 72 × 0.1 ml Tubes	Bloque de aluminio para la configura- ción de reacción manual con pipeta de un solo canal en tubos de 72 × 0,1 ml	9018901
Strip Tubes and Caps, 0.1 ml (250)	250 tiras de 4 tubos y tapones para 1.000 reacciones	981103
Strip Tubes and Caps, 0.1 ml (2500)	10 × 250 tiras de 4 tubos y tapones para 10.000 reacciones	981106

Información para pedidos

Producto	Contenido	Referencia
QIAamp DNA FFPE Tiss genómico obtenido de t	ue Kit, para la purificación de ADN ejidos impregnados en parafina	
QIAamp DNA FFPE Tissue Kit (50)	Para 50 extracciones de ADN: 50 columnas QIAamp MinElute®, proteinasa K, tampones, tubos de recogida (2 ml)	56404

Para obtener información actualizada sobre licencias y exenciones de responsabilidad específicas del producto, consulte el manual de uso o la guía del usuario del kit de QIAGEN correspondiente. Los manuales y las guías del usuario de los kits de QIAGEN están disponibles en <u>www.qiagen.com</u> o pueden solicitarse a los servicios técnicos de QIAGEN o a su distribuidor local. Marcas comerciales: QIAGEN[®], QIAamp[®], MinElute[®], Pyrosequencing[®], Rotor-Gene[®], Scorpions[®], *therascreen[®]* (Grupo QIAGEN); ARMS[®] (AstraZeneca Ltd.); FAMTM, HEXTM (Life Technologies, Inc.).

No debe utilizarse para determinar el riesgo de desarrollo de endometriosis.

Acuerdo de licencia limitada

La utilización de este producto implica por parte de cualquier comprador o usuario de los kits therascreen BRAF RGQ PCR la aceptación de los siguientes términos:

- El kit therascreen BRAF RGQ PCR debe utilizarse exclusivamente de acuerdo con el Manual del kit therascreen BRAF RGQ PCR y solo para uso
 con los componentes que se incluyen en el kit. QIAGEN no ofrece licencia alguna bajo ninguna de sus propiedades intelectuales para utilizar
 o incorporar los componentes suministrados en estos kits con componentes no incluidos en los mismos, excepto según se describe en el Manual
 del kit therascreen BRAF RGQ PCR y en protocolos adicionales disponibles en www.giagen.com.
- 2. Aparte de las licencias expresamente especificadas, QIAGEN no garantiza que estos kits ni su(s) uso(s) no infrinjan los derechos de terceros.
- 3. Este kit y sus componentes tienen licencia para un solo uso y no se pueden reutilizar, reacondicionar ni revender.
- 4. QIAGEN renuncia específicamente a cualquier otra licencia, explícita o implícita, distinta de las licencias expresamente especificadas.
- 5. El comprador y el usuario del kit aceptan no realizar ni permitir a otros realizar ningún paso que pueda conducir a acciones prohibidas en las especificaciones anteriores o que pueda facilitarlas. QIAGEN se reserva el derecho de emprender acciones legales ante cualquier tribunal para el cumplimiento de las prohibiciones especificadas en este Acuerdo de licencia limitada, y recuperará todos los gastos derivados de la investigación y de las costas judiciales, incluidos los honorarios de abogacía, por cualquier acción emprendida para garantizar el cumplimiento de este Acuerdo de licencia limitada o cualquier otro derecho de propiedad intelectual con relación a este kit y con sus componentes.

Para obtener los términos actualizados de la licencia, visite <u>www.qiagen.com</u>.

HB-1273-005 © 2016 QIAGEN. Reservados todos los derechos.

www.qiagen.com

Australia = techservice-au@qiagen.com Austria = techservice-at@qiagen.com Belgium = techservice-bnl@qiagen.com Brazil = suportetecnico.brasil@qiagen.com Canada = techservice-ca@qiagen.com China = techservice-cn@qiagen.com **Denmark** = techservice-nordic@qiagen.com Finland = techservice-nordic@qiagen.com France = techservice-fr@qiagen.com Germany = techservice-de@qiagen.com Hong Kong = techservice-hk@qiagen.com India = techservice-india@qiagen.com Ireland = techservice-uk@qiagen.com Italy = techservice-it@qiagen.com Japan = techservice-jp@qiagen.com Korea (South) = techservice-kr@qiagen.com Luxembourg = techservice-bnl@qiagen.com Mexico = techservice-mx@qiagen.com The Netherlands = techservice-bnl@qiagen.com Norway = techservice-nordic@qiagen.com Singapore = techservice-sg@qiagen.com Sweden = techservice-nordic@qiagen.com Switzerland = techservice-ch@qiagen.com UK = techservice-uk@qiagen.com USA = techservice-us@qiagen.com

Sample & Assay Technologies