Novembro 2019

Instruções de utilização do *therascreen*® KRAS RGQ PCR Kit (manual)

Versão 1

Diagnóstico in vitro qualitativo Para utilização com Rotor-Gene® Q MDx 5plex HRM

Sample to Insight

Índice

QIAGEN Sample and Assay Technologies	5
Utilização prevista	6
Resumo e explicação	7
Princípio do procedimento	
Materiais fornecidos	
Conteúdo do kit	12
Materiais necessários, mas não fornecidos	14
Avisos e precauções	
Informações de segurança	16
Precauções gerais	16
Armazenamento e manuseamento de reagentes	
Colheita e preparação de espécimes para análise e armazenamento	
Procedimento	
Extração do ADN	21
Protocolo: avaliação de amostras de ADN	23
Protocolo: deteção de mutações KRAS	
Interpretação de resultados	
Guia de resolução de problemas	
Alarmes gerados pelo therascreen KRAS Assay Package	51
Controlo de qualidade	55
Limitações	
Características de desempenho	

Desempenho analítico	
Cut-off	
Limite do branco	
Comparação com o método de referência analítica: CRC	
Comparação com o método de referência analítica: NSCLC	
Limite de deteção (Limit of Detection, LOD)	
Entrada e linearidade de ADN	
Substâncias interferentes	
Contaminação cruzada	
Exclusividade/reação cruzada	70
Repetibilidade e reprodutibilidade	73
Variação de manipulação de amostras	75
Equivalência de métodos de colheita de amostras (apenas NSCLC)	77
Referências	78
Símbolos	
Informações de contacto	
Apêndice 1: Protocolo manual do therascreen KRAS RGQ PCR Kit	
Interpretação de resultados (Manual)	
Definições de análise do software	
Análise de dados de avaliação de amostras	
Análise de amostras	
Anexo 2: Instalação do therascreen KRAS Assay Package	
Informações para encomendas	
Histórico de revisões do documento	

QIAGEN Sample and Assay Technologies

A QIAGEN é o principal fornecedor de tecnologias inovadoras de amostra e ensaio, permitindo o isolamento e a deteção do conteúdo de qualquer amostra biológica. Os produtos e serviços avançados e de elevada qualidade da nossa empresa são garantia de sucesso, desde a amostra ao resultado.

A QIAGEN é uma empresa de referência em matéria de:

- Purificação de ADN, ARN e proteínas
- Ensaios de ácidos nucleicos e proteínas
- Investigação em microARN e ARNi
- Automatização de tecnologias de amostragem e ensaio

A nossa missão é permitir ao utilizador alcançar um grande sucesso, bem como resultados notáveis. Para mais informações, visite www.qiagen.com.

Utilização prevista

O therascreen® KRAS RGQ PCR Kit é um ensaio qualitativo de PCR em tempo real para a deteção de 7 mutações somáticas nos codãos 12 e 13 do oncogene KRAS humano, utilizando o instrumento Rotor-Gene Q MDx 5plex HRM. O kit destina-se a ser utilizado com ADN extraído de amostras de tecido fixado em formalina e conservadas em parafina (Formalin-Fixed Paraffin-Embedded, FFPE) de cancro colorretal (Colorectal Cancer, CRC) ou de amostras de carcinoma de pulmão de células não pequenas (Non-Small Cell Lung Cancer, NSCLC) adquiridas por ressecção, por biopsia por agulha grossa (Core Needle Biopsy, CNB) ou por citologia aspirativa por agulha fina (Fine Needle Aspiration, FNA).

As mutações somáticas do gene KRAS são potenciais biomarcadores preditivos da resistência às terapias dirigidas ao fator de crescimento epidérmico humano (Epidermal Growth Factor Receptor, EGFR), tais como panitumumab e cetuximab para o tratamento do CRC. As mutações somáticas do gene KRAS podem também ser indicadas como um potencial biomarcador preditivo para tomar decisões de tratamento relativas a determinadas terapias NSCLC.

O estado de mutação do doente será tomado em consideração pelo médico, juntamente com outros fatores patológicos, para formular uma decisão relativamente à terapia. Nenhuma decisão sobre o tratamento de doentes com cancro se deve basear apenas no estado de mutação de KRAS.

O therascreen KRAS RGQ PCR Kit não se destina a diagnosticar cancro colorretal (Colorectal Cancer, CRC), carcinoma de pulmão de células não pequenas (Non-Small Cell Lung Cancer, NSCLC) ou qualquer outra doença.

Resumo e explicação

Os cancros humanos apresentam frequentemente mutações do oncogene KRAS (1–4). Utilizando as tecnologias Scorpions[®] e ARMS[®] (Amplification Refractory Mutation System) (5, 6), o *therascreen* KRAS RGQ PCR Kit permite a deteção de 7 mutações nos codãos 12 e 13 do oncogene KRAS contra um fundo de ADN genómico de tipo selvagem (Tabela 1). Com base em dados da base de dados COSMIC (2015 v72), as 7 mutações detetadas pelo *therascreen* KRAS RGQ PCR Kit representam > 95% de todas as mutações KRAS reportadas em doentes com CRC e > 88% de todas as mutações reportadas em doentes com NSCLC (7).

Mutação	Mudança de base	ID COSMIC*
GLY12ALA (G12A)	GGT>GCT	522
GLY12ASP (G12D)	GGT>GAT	521
GLY12ARG (G12R)	GGT>CGT	518
GLY12CYS (G12C)	GGT>TGT	516
GLY12SER (G12S)	GGT>AGT	517
GLY12VAL (G12V)	GGT>GTT	520
GLY13ASP (G13D)	GGC>GAC	532

Tabela 1	. Lista	de mutaç	óes e ide	ntificações	COSMIC
----------	---------	----------	-----------	-------------	--------

 * As ID COSMIC são retiradas do Catalog of Somatic Mutations in Cancer (Catálogo de Mutações Somáticas no Cancro) (7) (www.sanger.ac.uk/genetics/CGP/cosmic).

O teste é altamente específico e sensível, permitindo a deteção de uma percentagem baixa de ADN mutante num fundo de ADN de tipo selvagem. Desde que existam suficientes cópias de ADN, é possível a deteção de 0,8% de mutante num fundo de ADN genómico de tipo selvagem (consulte "Características de desempenho", na página 56, para obter informações sobre o limite de deteção para cada mutação).

O *therascreen* KRAS RGQ PCR Kit é utilizado num procedimento de reação de polimerização em cadeia (Polymerase Chain Reaction, PCR). A vantagem deste kit é que é altamente específico do alvo, e é rápido, eficaz e sem subjetividade na determinação dos resultados.

Princípio do procedimento

O *therascreen* KRAS RGQ PCR Kit utiliza duas tecnologias (ARMS e Scorpions) para a deteção de mutações em real-time PCR.

Misturas de reação de mutação

Cada mistura de reação utiliza um iniciador ARMS específico da mutação para amplificar de forma seletiva o ADN mutado e, em seguida, um iniciador Scorpions para detetar o produto da amplificação.

ARMS

A amplificação específica do alelo é obtida utilizando o ARMS, que explora a capacidade da polimerase *Taq* de ADN de distinguir entre uma base com correspondência e uma base sem correspondência na extremidade de 3' de um iniciador da PCR. Quando se consegue uma correspondência total com o iniciador, a amplificação prossegue com toda a eficácia. Quando a base de 3' não encontra correspondência, poderá ocorrer apenas a amplificação de fundo de baixo nível. Por conseguinte, uma sequência mutada é amplificada de forma seletiva, mesmo nas amostras em que a maioria do ADN não exibe a mutação.

Scorpions

A deteção da amplificação é realizada utilizando a tecnologia Scorpions. As moléculas tipo Scorpions são moléculas bifuncionais que contêm um iniciador da PCR ligado de forma covalente a uma sonda. A sonda incorpora o fluoróforo carboxifluoresceína (FAM[™]) e um supressor. Este último suprime a fluorescência do fluoróforo. Quando a sonda se liga ao amplicon ARMS durante a PCR, o fluoróforo e o supressor separam-se, originando um aumento detetável da fluorescência.

Formato do Kit

O therascreen KRAS RGQ PCR Kit contém 8 ensaios:

- 1 ensaio de controlo (mistura de reação de controlo [CTRL])
- 7 ensaios de mutação (12ALA, 12ASP, 12ARG, 12CYS, 12SER, 12VAL, 12ASP)

As misturas de reação são duplas e contêm reagentes etiquetados com FAM para detetar alvos e um controlo interno etiquetado com HEX™. As misturas de reação e os reagentes de controlos positivos contêm tampão Tris EDTA; o controlo positivo contém o ARN Poli A transportador.

Ensaios

O therascreen KRAS RGQ PCR Kit engloba um procedimento de 2 passos. No primeiro passo, é efetuado o ensaio de controlo para avaliar o ADN total amplificável de KRAS numa amostra. No segundo passo, são efetuados os ensaios de mutação e de controlo para determinar a presença ou ausência de ADN mutante.

Reação de controlo

A CTRL utiliza um iniciador Scorpions e um iniciador não etiquetado para amplificar uma sequência curta do exão 4 do gene KRAS. A reação de controlo é utilizada para determinar se está presente na amostra um nível apropriado de ADN amplificável e é um fator utilizado nos cálculos analíticos que são utilizados para determinar estados de mutação.

Ensaio de controlo

O ensaio de controlo, etiquetado com FAM, é utilizado para avaliar o ADN total amplificável de KRAS numa amostra. O ensaio de controlo amplifica uma região do exão 4 do gene KRAS. Os iniciadores e a sonda Scorpions destinam-se a amplificar independentemente qualquer polimorfismo conhecido do KRAS.

Ensaios de mutação

Cada ensaio de mutação contém uma sonda Scorpions etiquetada com FAM e um iniciador ARMS para a discriminação entre o ADN de tipo selvagem e um ADN mutante específico.

Controlos

Nota: Todas as execuções experimentais devem conter controlos positivos e negativos.

Controlo interno

Cada mistura de reação contém um controlo interno para além da reação alvo. Uma falha indica que poderão estar presentes inibidores que podem originar um resultado impreciso ou que ocorreu um erro de configuração do operador para esse tubo. Se a falha do controlo interno for devida a inibição da PCR, diluir a amostra pode reduzir o efeito dos inibidores. No entanto, é necessário ter em atenção que a diluição também dilui o ADN alvo. Está incluído no kit um tubo de água para diluição de amostra (Dil.). A diluição da amostra (Dil.) deve ser efetuada utilizando água.

Controlo positivo

Cada execução deve conter um controlo positivo nos tubos 1–5. O *therascreen* KRAS RGQ PCR Kit contém o controlo positivo (Positive Control, PC) KRAS, a utilizar como modelo na reação do controlo positivo. Os resultados do controlo positivo serão avaliados para garantir que o kit tem um desempenho de acordo com os critérios de aceitação estabelecidos.

Controlo Negativo

Cada execução deve conter um controlo negativo ("controlo sem modelo") nos tubos 9–13. O *therascreen* KRAS RGQ PCR Kit contém água para o controlo sem modelo (No Template Control, NTC) a utilizar como o "modelo" do controlo sem modelo. O controlo sem modelo é utilizado para avaliar qualquer potencial contaminação durante a configuração da execução e para avaliar o desempenho da reação do controlo interno.

Avaliação de amostras

A mistura de reação de controlo (CTRL) fornecida com o *therascreen* KRAS RGQ PCR Kit é utilizada para avaliar o ADN total amplificável de KRAS numa amostra. O ensaio de controlo amplifica uma região do exão 4 do gene KRAS. Recomenda-se a preparação de amostras com apenas o ensaio de controlo, utilizando o controlo positivo (Positive, Control, PC) KRAS como controlo positivo e água para NTC como controlo sem modelo.

Plataforma e software

O *therascreen* KRAS RGQ PCR Kit foi concebido especificamente para ser utilizado com o instrumento Rotor-Gene Q MDx 5plex HRM. O software Rotor-Gene Q e o *therascreen* KRAS Assay Package estão disponíveis para transferência da Web ou num CD separado.

Os instrumentos Rotor-Gene Q MDx 5plex HRM devem ser mantidos de acordo com os requisitos indicados no manual do utilizador do instrumento. Para informações relativas ao equipamento, consulte o manual do utilizador.

Consulte Anexo 2: Instalação do therascreen KRAS Assay Package para obter instruções de instalação.

Materiais fornecidos

Conteúdo do kit

therascreer	KRAS RGQ PCR Kit			(24)
N.º de catá	logo	ul		874011
Número de	preparações	Identifico	içao ao tubo	24
Cor	Identificação			Volume
Vermelho	Control Reaction Mix (Mistura de Reação de Controlo)	1	CTRL	2 x 600 µl
Roxo	12ALA Reaction Mix (Mistura de reação 12ALA)	2	12ALA	600 Ju
Laranja	12ASP Reaction Mix (Mistura de reação 12ASP)	3	12ASP	lų 006
Rosa	12ARG Reaction Mix (Mistura de reação 12ARG)	4	12ARG	600 µl
Verde	12CYS Reaction Mix (Mistura de reação 12CYS)	5	12CYS	600 Ju
Amarelo	12SER Reaction Mix (Mistura de reação 12SER)	6	12SER	600 µl
Cinzento	12VAL Reaction Mix (Mistura de reação 12VAL)	7	12VAL	600 µl
Azul	13ASP Reaction Mix (Mistura de reação 13ASP)	8	13ASP	600 µl
Bege	KRAS Positive Control (Controlo Positivo KRAS)	9	PC	250 µl
Verde- menta	Taq DNA Polymerase (Polimerase Taq de ADN)		Taq	اµ 80
Branco	Water for NTC (Água para NTC)		NTC	1,9 ml
Branco	Water for Sample Dilution (Água para Diluição de Amostra)		Dil.	1,9 ml
therascreen	KRAS RGQ PCR Kit Handbook (mar	nual em ing	ılês)	1

Materiais necessários, mas não fornecidos

Ao trabalhar com substâncias químicas, utilize sempre uma bata de laboratório adequada, luvas descartáveis e óculos de proteção. Para mais informações, consulte as fichas de dados de segurança (FDS) apropriadas, disponibilizadas pelo fornecedor do produto.

Reagentes

- QIAamp[®] DNA FFPE Tissue Kit (n.° de cat. 56404; consulte Extração do ADN)
- Xileno
- Etanol (96–100%)*

Consumíveis

- Pontas de pipeta esterilizadas (para evitar contaminação cruzada, recomendamos pontas de pipeta com barreira para aerossóis)
- Tubos de microcentrifugação esterilizados para a preparação de misturas principais
- 0.1 ml Strip Tubes and Caps para utilização com 72-Well Rotor (n.º de cat. 981103 ou 981106)

Equipamento

- Rotor-Gene Q MDx 5plex HRM com canais de fluorescência para Cycling Green e Cycling Yellow (deteção de FAM e HEX, respetivamente)
- Software Rotor-Gene Q, versão 2.3, com o KRAS Assay Package (versão 3.1.1) instalado para deteção automática de mutações (consulte Anexo 2: Instalação do therascreen KRAS Assay Package).

^{*} Não utilizar álcool desnaturado, que contém outras substâncias como metanol ou metil-etil-cetona.

Nota: O software Rotor-Gene Q pode ser utilizado sem o KRAS Assay Package para deteção manual de mutações. Consulte Apêndice 1: Protocolo *manual* do therascreen KRAS RGQ PCR Kit.

- Termoagitador*, incubador orbital aquecido, bloco de aquecimento ou banho-maria com capacidade de incubação a 56 °C e a 90 °C
- Centrífuga de bancada[†] com rotor de tubo de 1,5 ml
- Agitador vórtex de bancada[†]
- Pipetas de uso exclusivo (ajustáveis) para a preparação de amostras†
- Pipetas de uso exclusivo (ajustáveis) para a preparação de mistura principal de PCR*
- Pipetas (ajustáveis) de uso exclusivo para distribuir o modelo de ADN*

* Certifique-se de que os instrumentos foram verificados e calibrados de acordo com as recomendações do fabricante.
 † Não utilizar álcool desnaturado, que contém outras substâncias como metanol ou metil-etil-cetona.

Avisos e precauções

Para utilização em diagnóstico in vitro

Informações de segurança

Ao trabalhar com substâncias químicas, utilize sempre uma bata de laboratório adequada, luvas descartáveis e óculos de proteção. Para obter mais informações, consulte as fichas de dados de segurança (FDS) adequadas. Estas estão disponíveis online no formato PDF prático e compacto em www.qiagen.com/safety, onde é possível encontrar, visualizar e imprimir a FDS de cada kit QIAGEN e respetivo componente.

Precauções gerais

O utilizador deve ter sempre em atenção o seguinte:

- Armazene e extraia materiais positivos (espécimes e controlos positivos) separadamente de todos os outros reagentes e adicione-os à mistura de reação num local em separado.
- Tenha muito cuidado para evitar a contaminação das PCR com o material de controlo sintético. Recomenda-se a utilização de pipetas diferentes, de uso exclusivo, para preparar as misturas de reação e adicionar o modelo de ADN. A preparação e a dispensa das misturas de reação têm de ser efetuadas numa área diferente daquela onde se adiciona o modelo. Os tubos do Rotor-Gene Q não podem ser abertos depois de terminada a execução de PCR. Isto destina-se a evitar a contaminação laboratorial com produtos pós-PCR.
- Os reagentes do therascreen KRAS RGQ PCR Kit foram diluídos a uma concentração otimizada. Não se recomenda a diluição adicional dos reagentes, pois pode resultar numa redução do seu desempenho. Não se recomenda a utilização de volumes de reação inferiores a 25 µl, uma vez que aumentaria o risco de resultados falso-negativos.
- Todos os reagentes do therascreen KRAS RGQ PCR Kit foram formulados especificamente para um desempenho otimizado. Todos os reagentes fornecidos no kit

destinam-se a ser utilizados unicamente com os outros reagentes fornecidos no mesmo *therascreen* KRAS RGQ PCR Kit. Para se manter um nível de desempenho ideal, não se deve substituir os reagentes do kit.

 Utilize apenas a polimerase Taq de ADN (Taq) fornecida no kit. Não substitua com polimerase Taq de ADN de outros kits do mesmo tipo ou de qualquer outro tipo ou com polimerase Taq de ADN de outro fornecedor.

Armazenamento e manuseamento de reagentes

O therascreen KRAS RGQ PCR Kit é expedido em gelo seco. Se qualquer componente do therascreen KRAS RGQ PCR Kit não chegar ao destino em estado congelado, se a embalagem exterior tiver sido aberta durante o transporte ou se a remessa não contiver uma nota de embalagem, o manual de instruções ou os reagentes, contacte um dos Departamentos da Assistência Técnica QIAGEN ou os distribuidores locais (consulte o verso do manual ou visite-nos em www.qiagen.com).

O *therascreen* KRAS RGQ PCR Kit deverá ser armazenado imediatamente após a receção, a uma temperatura entre -30 °C e -15 °C num congelador de temperatura constante e protegido da luz. Tal como com todas as moléculas etiquetadas com fluorescência, as moléculas Scorpions devem estar sempre protegidas da luz para evitar a sua fotodescoloração e perda de desempenho.

Quando armazenado nas condições de armazenamento recomendadas na embalagem original, o *therascreen* KRAS RGQ PCR Kit permanecerá estável até à data do prazo de validade. Deve evitar-se o descongelamento e congelamento sucessivos. Não exceda um máximo de 6 ciclos de congelamento/descongelamento.

Colheita e preparação de espécimes para análise e armazenamento

Nota: Todas as amostras devem ser tratadas como material potencialmente infecioso.

O material das amostras deve ser ADN genómico humano extraído de tecido FFPE. Os espécimes devem ser transportados de acordo com a metodologia de patologia normal, para assegurar a qualidade dos espécimes.

As amostras de tumores são heterogéneas e os dados de uma amostra do tumor podem não condizer com os dados de outras secções do mesmo tumor. As amostras do tumor podem também conter tecido não tumoral. Não se espera que ADN de tecido não tumoral contenha mutações detetadas pelo *therascreen* KRAS RGQ PCR Kit.

Preparação de amostras de tecido

Nota: Utilize apenas bisturis secos. Não execute este passo numa câmara de escoamento laminar ou numa campânula de fumos.

 Raspe o tecido tumoral das secções para tubos de microcentrifugação etiquetados, utilizando um bisturi esterilizado novo para cada amostra.

Preparação de amostras de tecido para extração de ADN (CRC)

- Utilizando materiais e métodos padrão, fixe o espécime de tecido em formalina neutra tamponada (neutral buffered formalin, NBF) a 10% e embeba a amostra de tecido em parafina. Utilizando um micrótomo, corte secções consecutivas de 5 µm do bloco de parafina e monte-as em lâminas de vidro.
- Uma pessoa qualificada (por ex., um patologista) deve avaliar uma secção corada de Hematoxylin & Eosin (H&E) relativamente a conteúdo tumoral e determinação da área.

Marque a lâmina corada para distinguir o tumor de tecido normal. Utilize secções consecutivas para extração de ADN.

- Utilize secções com mais de 20% de conteúdo tumoral por área para processamentos sem macro dissecação (ver a seguir).
- Para secções com menos de 20% de conteúdo tumoral por área, efetue a macro dissecação de uma ou mais secções. Não utilize tecido não tumoral.
- Para secções com área < 4 mm², processe duas ou mais secções para aumentar a área tumoral total para, pelo menos, 4 mm² (aplica-se a amostras com e sem macro dissecação). Não utilize tecido não tumoral.
- Raspe o excesso de parafina das secções de tecido, utilizando um bisturi esterilizado novo.

Preparação de amostras de tecido para extração de ADN (Non-Small Cell Lung Cancer, NSCLC)

- Utilizando materiais e métodos padrão, fixe o espécime de tecido em formalina neutra tamponada (neutral buffered formalin, NBF) a 10% e preserve a amostra de tecido em parafina. Utilizando um micrótomo, corte secções consecutivas de 5 µm do bloco de parafina e monte-as em lâminas de vidro.
- Uma pessoa qualificada (por ex., um patologista) tem de avaliar uma secção corada de H&E relativamente à presença de tumor. Utilize secções consecutivas para extração de ADN.
- Raspe o excesso de parafina das secções de tecido, utilizando um bisturi esterilizado novo.

Armazenagem

Armazene lâminas e blocos FFPE à temperatura ambiente. As lâminas podem ser armazenadas à temperatura ambiente durante até 4 semanas antes da extração do ADN.

O ADN genómico pode ser armazenado a temperaturas entre 2 °C e 8 °C durante 1 semana após a extração e, subsequentemente, entre -25 °C e -15 °C durante até 8 semanas antes de ser utilizado.

Procedimento

Extração do ADN

As características de desempenho do *therascreen* KRAS RGQ PCR Kit foram geradas utilizando ADN extraído com o QIAamp DNA FFPE Tissue Kit (n.º de catálogo 56404). Se utilizar o QIAamp DNA FFPE Tissue Kit, efetue a extração do ADN de acordo com as instruções descritas no manual de instruções, tendo em atenção o seguinte.

Extração de ADN (amostras CRC)

- O QIAamp DNA FFPE Tissue Kit só deve ser utilizado manualmente.
- Não utilize o passo de RNase descrito no Manual de instruções do QIAamp DNA FFPE Tissue Kit.
- Não utilize a QIAGEN Deparaffinization Solution. Utilize apenas o método de xileno/etanol de desparafinização descrito no Manual de instruções do QIAamp DNA FFPE Tissue Kit.
- A digestão de proteinase K (passo 11 no Manual de instruções do QIAamp DNA FFPE Tissue Kit) deve ser efetuada durante 1 hora.
- As amostras devem ser eluídas utilizando 200 µl de tampão de eluição (Buffer ATE) do QIAamp DNA FFPE Tissue Kit.

Extração de ADN (amostras NSCLC)

- Utilize secções de 2 x 5 µm por extração.
- O QIAamp DNA FFPE Tissue Kit só deve ser utilizado manualmente.
- Não utilize o passo de RNase descrito no Manual de instruções do QIAamp DNA FFPE Tissue Kit.
- Não utilize a QIAGEN Deparaffinization Solution fornecida no QIAamp DNA FFPE Tissue Kit. Utilize apenas o método de xileno/etanol de desparafinização descrito no Manual de instruções do QIAamp DNA FFPE Tissue Kit.
- A digestão de proteinase K (passo 11 no Manual de instruções do QIAamp DNA FFPE Tissue Kit) deve ser efetuada durante 1 hora.
- Adicione 60 µl de tampão de eluição (ATE) do QIAamp DNA FFPE Tissue Kit e incube durante 2,5 minutos à temperatura ambiente.
- Centrifugue a toda a velocidade durante 1 minuto.
- Adicione mais 60 µl de tampão de eluição (ATE) do QIAamp DNA FFPE Tissue Kit e incube durante 2,5 minutos à temperatura ambiente.
- Centrifugue a toda a velocidade durante 1 minuto.

Protocolo: avaliação de amostras de ADN

Este protocolo é utilizado para avaliar o ADN total amplificável em amostras utilizando o "KRAS CE Sample Assessment Locked Template" (Assay Package) para avaliação automática de amostras.

Nota: Para avaliação manual de amostras, consulte Apêndice 1: Protocolo manual do *therascreen* KRAS RGQ PCR Kit.

Pontos importantes antes de começar

- Utilizando a CTRL disponível, podem ser avaliadas até 24 amostras.
- Utilize a CTRL para avaliar o ADN antes dos testes.

Nota: Para esta avaliação, é importante utilizar a CTRL conforme descrito em seguida e não recorrer a espetrofotometria ou outros métodos alternativos. O ADN altamente degradado poderá não amplificar, embora os iniciadores gerem fragmentos curtos de ADN.

- Para uma utilização mais eficaz dos reagentes do therascreen KRAS RGQ PCR Kit, crie lotes de amostras de ADN o máximo que for possível para criar execuções completas. Testar amostras individualmente ou em números mais pequenos, gasta mais reagentes e reduz o número total de amostras que podem ser testadas com um só therascreen KRAS RGQ PCR Kit.
- Antes da primeira utilização do instrumento Rotor-Gene Q MDx 5plex HRM, certifique-se de que está instalada a versão de software correta do *therascreen* KRAS Assay Package, correspondente à versão de software Rotor-Gene Q (consulte Anexo 2: Instalação do therascreen KRAS Assay Package).

Procedimento

 Descongele completamente a mistura de reação de controlo (tubo da CTRL), a água isenta de nuclease para controlo sem modelo (No Template Control, NTC) e o controlo positivo (Positive Control, PC) KRAS à temperatura ambiente (15 a 30 °C) durante, pelo menos, uma 1 hora.

Nota: A polimerase Taq de ADN (Taq) deve ser colocada à temperatura ambiente (15 a 30 °C) ao mesmo tempo que os outros reagentes (consulte Armazenamento e manuseamento de reagentes). Centrifugue o tubo com brevidade para recolher a enzima no fundo do tubo.

A Tabela 2 indica os tempos de descongelação de reagentes, de preparação da PCR e de armazenamento antes de iniciar a execução.

Nota: Efetue a preparação da PCR à temperatura ambiente.

	Tempo de descongelação	Temperatura de armazenamento*	Tempo máximo de preparação
Minimo	Maximo	após preparação da PCR	e armazenamento da PCR
1 hora	4,5 horas	Temperatura ambiente (15 a 30 °C)	7 horas
1 hora	4,5 horas	2 a 8 °C	18 horas

Tabela 2. Tempo de descongelação, tempos de preparação da PCR e temperaturas de armazenamento

* O termo "armazenamento" refere-se ao tempo entre a conclusão da preparação da PCR e o início da execução da PCR no instrumento Rotor-Gene Q MDx 5plex HRM.

 Misture os reagentes descongelados, invertendo cada tubo 10 vezes para evitar concentrações localizadas de sais e, em seguida, centrifugue brevemente para recolher o conteúdo no fundo do tubo.

Nota: Não agite no vórtex a polimerase *Taq* de ADN (*Taq*) nem qualquer mistura que contenha *Taq*, pois isso poderia desativar a enzima.

 Prepare misturas principais suficientes (mistura de reação de controlo [CTRL] + polimerase Taq de ADN [Taq]) de acordo com os volumes na Tabela 3 para efetuar o seguinte:

- todas as amostras ADN
- 1 reação de Controlo Positivo (Positive Control, PC) KRAS
- 1 reação de água isenta de nuclease para Controlo Sem Modelo (No Template Control, NTC)
- 1 amostra suplementar para permitir uma quantidade extra suficiente para a configuração da PCR

A mistura principal contém todos os componentes necessários para a PCR, exceto a amostra.

Componente	Volume
Mistura de reação de controlo (CTRL)	19,76 µl × (n + 1)*
Polimerase Taq de ADN (Taq)	0,24 µl × (n + 1)*
Volume total	20 µl/reação

Tabela 3. Preparação da mistura principal do ensaio de controlo

* n = número de reações (amostras + controlos).

Prepare mistura principal suficiente para uma amostra suplementar (n+1) para garantir quantidade extra suficiente para a preparação da PCR.

O valor n não deverá exceder 24 (mais controlos), uma vez que 24 é o número máximo de amostras que podem ser incluídas numa execução.

Nota: Quando preparar a mistura principal, o volume necessário de mistura de reação de controlo (CTRL) é adicionado em primeiro lugar no tubo relevante, e a polimerase *Taq* de ADN (*Taq*) é adicionada por último.

Nota: Pipete a polimerase *Taq* de ADN colocando cuidadosamente a ponta da pipeta ligeiramente abaixo da superfície do líquido, para evitar que a ponta seja revestida com excesso de enzima.

 Coloque o número apropriado de tubos de 4 tiras de PCR (cada tira tem 4 tubos) no bloco de carregamento de acordo com o esquema apresentado na Tabela 4. Não coloque tampas nos tubos.

Nota: Deixe as tampas no recipiente de plástico até serem necessárias.

1									
Ensaio									
Controlo	1 (PC)	9	17	25	-	-	-	-	-
Controlo	2 (NTC)	10	18	26	-	-	-	-	-
Controlo	3	11	19	-	-	-	-	-	-
Controlo	4	12	20	-	-	-	-	-	-
Controlo	5	13	21	-	-	-	-	-	-
Controlo	6	14	22	-	-	-	-	-	-
Controlo	7	15	23	-	-	-	-	-	-
Controlo	8	16	24	-	-	-	-	-	-

Tabela 4. Configuração de execução no bloco de carregamento para avaliação de amostras ADN

* Os números representam as posições no bloco de carregamento e indicam a posição final no rotor.

- 5. Ajuste uma pipeta para um volume inferior ao volume total da mistura principal de reação e misture bem, aspirando totalmente para cima e para baixo 10 vezes.
- 6. Acrescente imediatamente 20 µl de mistura principal a cada tubo de tiras de PCR. Nota: Consulte a Tabela 4 para obter a configuração do tubo. Para a avaliação das amostras de ADN, deverá ser adicionada mistura principal do ensaio de controlo a um tubo de PC, um tubo de NTC e um tubo de cada amostra de ADN.
- Adicione imediatamente 5 µl de água isenta de nuclease para controlo sem modelo (No Template Control, NTC) ao tubo do NTC (posição de tubo 2) e coloque a tampa no tubo.
- Adicione 5 µl de cada amostra de ADN aos tubos de amostra (posições de tubo 3– 26) e coloque as respetivas tampas nos tubos.
- Adicione 5 µl de controlo positivo (Positive Control, PC) KRAS ao tubo do PC (posição de tubo 1) e coloque a tampa no tubo.

Cada tubo deverá conter um volume de reação total de 25 µl (20 µl de mistura principal preparada conforme a Tabela 3 mais 5 µl de NTC/amostra/PC).

- 10.Utilizando um marcador permanente, marque as tampas dos primeiros tubos na posição numérica mais baixa em cada um dos tubos de 4 tiras de PCR (por ex., posições 1, 5, 9 etc.) para indicar a orientação para carregamento dos tubos no rotor de 72 poços do instrumento Rotor-Gene Q MDx 5plex HRM.
- Inverta 4 vezes os tubos com tampas para misturar a amostra com a mistura de reação.
- 12.Coloque todos os tubos de 4 tiras de PCR nas posições apropriadas do rotor de 72 poços, de acordo com a configuração de execução (Tabela 4), utilizando as marcas para orientação.

Nota: Se o rotor não ficar totalmente ocupado, todas as posições não utilizadas do rotor têm de ser preenchidas com tubos vazios com tampa. Isto garante que é mantida a eficiência térmica do instrumento Rotor-Gene Q MDx 5plex HRM.

- 13.Coloque o rotor de 72 poços no instrumento Rotor-Gene Q MDx 5plex HRM. Certifique-se de que o anel de aperto (fornecido com o instrumento Rotor-Gene Q MDx 5plex HRM) é colocado por cima do rotor para prender os tubos durante a execução.
- 14. Clique duas vezes no ícone therascreen KRAS QC Locked Template (Modelo bloqueado do therascreen KRAS QC) do ambiente de trabalho do computador portátil ligado ao instrumento Rotor-Gene Q MDx 5plex HRM (Figura 1) para iniciar o software Rotor-Gene Q.

Figura 1. O ícone "therascreen KRAS QC Locked Template" (Modelo bloqueado do therascreen KRAS QC).

O separador "Setup" (Configuração) é apresentado como predefinição (Figura 2).

View									
Setup	Υ.	Bun Progess			1		Bridi	à l	
This screen diplay microlivence and potons for the sur. Complete the CA Name : Researce 17845 CE Refer: Red PCN 1/2 TempLete Version : 30.2	telds and clob. Start Run when you are ready Cocking Ring Attached	to begin the run							
Run ID: [DNA Sample Assessment	Laport of	the pipelling adapte	-				_		
Inport Sangles Sangles Sangle Name. [Sangle 0	Protein PC Control	Pusition 9 Sample 7 Control	Position 17 Not used	Public 25 Not used	Positive 32 Not used	Puston 41 Rot over	Poster 43 Not used		
Sangle 10 Sangle Name 1 Sangle 1 2 Sangle 2 3 Sangle 3	Poolice: NFC Covinsi	2 Position 10 Sample 8 Control	Posters 53 Not seed	Parmer 28 Not Lot	Protoc 24 Not used	Proton G Nit joint	Product 50 Not cord	Paning SE Hol word	Protect 60 Not served
4 Sargle 4 5 Sargle 5 6 Sargle 6 7 Sargle 6 8 Sargle 1 8 Sargle 1	Position: Sancie 1 Control	Profess 11 Reference	Police 19 Not used		Paster 26 Not used	Position Cl Not used		Paulion 58 Not used	Profess 82 National
	Poster Sargle 2 Control	Foodiers 12 Add used	Frankiss 20. Hot good	Postary 20 Not could	Product 25 Box west	Produce 14 Not seed		Passar 60. Not used	Protect 88 Not weed
	Position Sample Control	Protein 12 Not web	Postper21 Ref unit	Paritor 29 Not safed	Produce 27 Not used	Packer II Not used	Provincial National	Publice(S1 Not yield	Poster 10 fatured
	Position Sample Coreol	Francis 14	Philips 22 Ret used	Public 30	Paidor:20 Notwood	Proton 41 103 uppt	Parter 54 Niturel	Pisiker62 Notweed	Produce 70 Put used
	Poolers Sangle S Corbol	Product 15 N.X.cont	Posikes 23 Not sent	Prolines 71 Not cored	Paster: 78 Not used	Profess 47 Mill solet	Puster III Not cost	Protory 51 Not open	Produce 75 Not const
	Posteri Sargle S	Protocolli	Personal		Protor 41		Provide Add		

Figura 2. O separador "Setup" (Configuração) e a caixa "Locking Ring Attached" (Anel de aperto anexado). 1 = separador "Setup" (Configuração); 2 = caixa "Locking Ring Attached" (Anel de aperto anexado).

- 15.Certifique-se de que o anel de aperto está anexado adequadamente e marque a caixa "Locking Ring Attached" (Anel de aperto anexado). Feche a tampa do instrumento Rotor-Gene Q MDx 5plex HRM.
- 16. Introduza a ID da execução no campo Run ID (ID da execução) de acordo com a convenção de nomenclatura local. Introduza o nome da amostra no campo de Sample Name (Nome da amostra) de acordo com a convenção de nomenclatura local e prima a tecla de retrocesso.

Isto irá adicionar o nome da amostra à lista de amostras em baixo e atribuir à amostra uma "Sample ID" (ID de amostra) (1, 2, 3, etc.). Além disso, o painel "Layout of the

pipetting adapter" (Configuração do adaptador de pipetagem), no lado direito, será atualizado para incluir o nome da amostra (Figura 3).

Alternativamente, podem ser importados nomes de amostras armazenados em formato *.smp (ficheiro de amostra Rotor-Gene Q) ou formato *.csv (valores separados por vírgulas) utilizando o botão Import Samples (Importar amostras). Os nomes de amostra são introduzidos automaticamente utilizando este método.

Nota: No painel "Layout of the pipetting adapter" (Configuração do adaptador de pipetagem), verifique se o nome de amostra adicionado ficou destacado através de uma alteração da cor e se o nome da amostra está na posição da amostra (Figura 3).

Nota: Os nomes de amostras com mais de 8 caracteres poderão não estar totalmente visíveis no painel "Layout of the pipetting adapter" (Configuração do adaptador de pipetagem).

Figura 3. Introdução de "Run ID" (ID da execução) e de "Sample Name" (Nome da amostra). 1 = campo de diálogo "Run ID" (ID da execução); 2 = botão "Import Samples" (Importar amostras); 3 = campo de diálogo "Sample Name" (Nome da amostra); 4 = lista de amostras; 5 = painel "Layout of the pipetting adapter" (Configuração do adaptador de pipetagem).

17.Repita o passo 16 para introduzir os nomes de todas as amostras adicionais (Figura 4).

Nota: Para editar um nome de amostra, clique no respetivo "Sample Name" (Nome da amostra) na lista de amostras; a amostra selecionada será apresentada no campo de diálogo "Sample Name" (Nome da amostra) acima. Edite o nome da amostra de acordo com a convenção de nomenclatura local e prima a tecla de retrocesso para atualizar o nome.

1 File Help											-
	View										
Setup		ĩ		Bun Propess			T		(frid)	66 C	
This screen diplays microflamous setup options for: Kit Name : Brog PCR Xa RGG PCR Xa Template Version : 3:0.2	te nn. Conplete t Roter :	e felds and click Stat Flum with	en you are ready to Notes :	legin the sun							
Run ID: DNA Sample Assessment		-	Lapoul of the	pipelling adapte				_			
Sanplet Samplet Sample Name. [Sample II			Posten 1 PC Contol	Position 9 Sample 7 Control	Posice(1) Not used	Public 25 Not used	Product 22 Not used		Postor 41 Not used		Postev (15) Nit cont
Sample ID Sample Name 1 Sample 1 2 Sample 2 3 Sample 3			Position:2 NTC Coninui	Position 10 Sample 8 Control	Poder VI Net cost	Parities,28 Not Lines	Pasting 34 Not used	Proton G Not cont	Privilean 50 Not cond	Parkey SE Not your	Passier 65 Gal seed
4 Sangle 4 5 Sangle 5 6 Sangle 6 7 Sangle 7 8 Sangle 7			Positor:3 Sangle 1 Comol	Profession Ref and	Position 19 Not used		Paster 25 Not used	Position Cl Not used	Product51 Not used	Paulion 50 Not cond	Product 82 National
			Position 4 Sample 2 Control	Product 12 Add until	Parallel 20 Not used		Product X Bit west	Produce \$4 Not seed		Passion 40. Not used	Packer-31 Nitwel
			Poster:5 Sanple 3 Control	Protein 13 Red until	Poster 21 Ref unit	Pucker 29 Rot uned	Produce 31 Not used	Packter #1 hot seried		Publice (23 Not used	Protein 61 Natured
			Position 6 Sample 4 Corect	Produce 14 Phil scelet	Photoso 22 Not used	Public 30	Product 20 Notwood	Pacifice 45 103 (2011)	Factors 54 Netword		Product 71 Ref upod
			Poster:7 Sarple 5 Coreol	Profeen 15 Not creat	Postker-23 Nor seet	Product 71 Mat covel	Poster: 75 Not used	Profess 47 Mill prest	Paster 10 School	Protory 61 Not caref	Produce 75 Mat. open
			Position:8 Sample 6 Control	Proton 16	Proton 24		Protor 40	Public, 43	Produce feb	Pather,64	Frankers 72

Figura 4. Introdução de nomes de amostras adicionais no campo de diálogo "Sample Name" (Nome da amostra).* 1 = botão "Import Samples" (Importar amostras); 2 = campo de diálogo "Sample Name" (Nome da amostra) e lista de amostras; 3 = painel "Layout of the pipetting adapter" (Configuração do adaptador de pipetagem) com nome de amostra adicional.

18. Quando tiverem sido introduzidos todos os nomes de amostras, certifique-se de que os mesmos estão corretos. Caso necessário, adicione quaisquer informações adicionais no campo Notes (Notas) e, em seguida, clique em Start Run (Iniciar execução) (Figura 5). Nota: Se alguma posição do rotor não estiver a ser utilizada, é apresentado um "Warning" (Aviso) (Figura 5 e Figura 6) recordando o utilizador de que todas as posições não utilizadas do rotor devem ser ocupadas por tubos vazios com tampas. Certifique-se de que todas as posições não utilizadas do rotor estão ocupadas com tubos vazios com tampas e clique em OK para prosseguir.

The Hep											- I
	View										
Setup		1		Buri Propera			1		Ériol	da C	
This scene digitys microlineous setup options for 1 K& Name : Resultance: FRAS DE RSG POR IX Template Version : 3.0.2	ne rum. Complete 8 Rotor :	e felds and click Start Run whe	n you are ready to Notes :	begin the run							
Bun ID; DNA Sample Assessment		-	Lapout of the	pipeting adapte							
Sangles Sangles Sangle Name, [Sangle 0			Position 1 PC Control	Position 9 Sample 7 Control	Poulices17 Not used	Public 25		Pastan 41 Text avent	Pariton 41 Not used		Posteveld Natured
Sample ID Sample Name 1 Sample 1 2 Sample 2 3 Sample 3			Position 2 NTC Control	Position 10 Sample 8 Control	Poster 58 Not jord	Permit 28 Noticed	Profess 24 Not used	Photon G Not steel	Product 52 Not cord	Portion SE Not load	Paster 85 Galarel
4 Sangle 4 5 Sangle 5 6 Sangle 6 7 Sangle 6 7 Sangle 7 8 Sangle 9			Poster 3 Sanple 1 Control	Produces 11 Not sound	Police 19 Natured		Paster 26 Not used	Positors Cl flot used		Proton 53 Not cond	Protect \$2 Not cost
			Position 4 Sangle 2 Control	Frontiers 12 Add used	Pauline 20. Not used		Product X Bit west	Product 14 Not werd		Paular 40. Not used	Paster 61 Net wet
			Position:5 Sample 3 Control	Produces 13 Not used	Provine 21 Red unit	Packarc29 Rot saled	Produce 31 Not used	Produce all fist served		Publice(E) Not your	Produce 400 Nationed
			Positiancia Sample 4 Corecti	Produce 14 Phil world		Public 30	Profeet 20 Not used	Paulton 45 163 auto)	Parity 54 Network	Pitcher 62 Not used	Product 70 Ref. and
			Position 7 Sample 5 Conitol	Profess 15 Ref cred	Postker 23 Nor cost	Product 71 Mat.ored	Paster: 78 Not used	Produce 47 Molessent	Paster 15 Sid cet	Probary 53	Produce 75 Million cont
			Position:8 S-angle 6 Control	Produce 16	Poster-24	Funtant 12	Pustor 42	Pustan, 41	Protects	Patien 64	Fester 72

Figura 5. Campo de diálogo "Notes" (Notas), "Start Run" (Iniciar execução) e "Warning" (Aviso) sobre as posições do rotor não utilizadas.

Layout of the p	pipetting adapter:			
Position:1 PC Control	Position:9 Sample 7 Control	Position:17 Not used	Position:25 Not used	Position:33 Not used
Rotor-Ger	ne Q Serie	s Softwar	e 🔀	
i) War	ning - There ar	re unused Roto	r Tubes.	Position:34 Not used
Plea Do y	ise fill all unuse You wish to con	d positions with tinue?	n empty tubes.	D
	OK	Cancel		Not used
Sample 2 Control	Position:12	Position:20	Position:28	Position:36
	NUCUSED	NUCUSEU		
Position:5 Sample 3 Control	Position:13	Position:21	Position:29	Position:37

Figura 6. 1 = "Warning" (Aviso) sobre as posições do rotor não utilizadas.

19. Aparece uma janela "Save As" (Guardar como). Selecione um nome de ficheiro apropriado e guarde a execução da PCR como um ficheiro de execução *.rex na localização selecionada. Clique em Save (Guardar) (Figura 7).

	Save As					? 🗙	1	
DNA Sample Assess	Save in:	🞯 Desktop			. + • • •			
ve: Sample 8	My Recent Documents	My Docume My Comput My Network	ents ter k Places				Position:25 Not used	Positio Not us
1 Sample 1 2 Sample 2 3 Sample 3 4 Sample 4 5 Sample 5	Desktop						Position:26	Positio
6 Sample 6 7 Sample 7 8 Sample 8	My Documents						Position:27 Not used	Positio Not us
	My Network	File name:	DNA Sample Asses	ment		Save	Position:28 Not used	Positio Not us

Figura 7. Guardar o ficheiro da execução. 1 = janela "Save As" (Guardar como); 2 = nome do ficheiro e guardar como ficheiro do tipo *.rex; 3 = "Save" (Guardar).

A execução da PCR inicia-se.

Nota: Quando a execução é iniciada, o separador "Run Progress" (Progresso da execução) abre-se automaticamente para mostrar o gráfico da temperatura e o tempo restante da execução (Figura 8).

Figura 8. Separador "Run Progress" (Progresso da execução).

Quando a execução termina, abre-se automaticamente o separador "Analysis" (Análise).

Nota: Se o separador "Analysis" (Análise) não abrir, clique no separador "Analysis" (Análise) (Figura 9).

Nota: Na secção "Interpretação de resultados", é apresentada uma explicação do método de cálculo.

	View			255	
	Setup	<u>R</u> un Progress	Analysis		
Sample 0	1° Rendi Table	Broot			
ubeID	Same	Control & coau Dt Elans/Au/arrings	Stature		
00010	PC Control	26.50	Vald		
	NTC Control		Valid		
	037710708	28.39 -	Valid		
	03771071B	27.38	Valid		
	037710728	30.07 -	Valid		
	037710738	26.53	Valid		
	037710748	29.55	Valid		
	037710758	28.45 -	Valid		
	037710768	29.95	Vald		
n	03771077B	29.02	Vaid		
1	037710798	31.42	Valid		
2	037710798	28.93	Vald		
3	037710818	29.60	Vaid		
4	037710828	31.44 .	Vaid		
5	037710838	31.02 .	Vald		
6	037710848	28.09	Valid		
7	037710868	29.91	Valid		
8	037710878	30.33 .	Vald		
9 9	037710888	30.22 .	Vald		
0	037710898	27.17	Valid		
,	037710908	29.87	Vaid		
2	037710918	29.32	Vald		
3	037710928	28.22	Vald		
	037710938	28.57	Vald		
	001110000		1.000		
5 15	02771094P	29.90	Valid		

Figura 9. O separador "Analysis" (Análise) e a apresentação de resultados. 1 = separador "Analysis" (Análise), 2 = "Sample QC Result Table" (Tabela de resultados de CQ da amostras).

Nota: Os resultados de controlo serão apresentados da seguinte forma na "Sample QC Result Table" (Tabela de resultados de CQ de amostras) (número 2 na Figura 9).

- Controlos da execução (PC e NTC nas posições de tubo 1 e 2, respetivamente): é apresentada a indicação "Valid" (Válido) se os resultados se encontrarem dentro dos intervalos aceitáveis. Caso contrário, é apresentado um resultado "Invalid" (Inválido).
- CT da reação de controlo da amostra > 32,00: é apresentada a indicação "Invalid" (Inválido). A quantidade de ADN não é suficiente para uma análise de mutação. Teste novamente a amostra. Se a quantidade de ADN continuar a ser insuficiente, extraia mais tecido tumoral, se disponível (consulte "Guia de resolução de problemas").
- C_T da reação de controlo da amostra < 21,92: é apresentada a indicação "Invalid" (Inválido). A concentração de ADN é demasiado alta para uma análise de mutação. Dilua com água isenta de nuclease para diluição (Dil.) e volte a testar. Dilua para um C_T de 21,92 a 32,00. Uma diluição de 1:1 aumenta o valor do C_T em aproximadamente 1,0.
- C⊺ da reação de controlo da amostra de 21,92-32,00 (21,92 ≤ C⊺ de controlo ≥ 32,00): é apresentada a indicação "Valid" (Válido). A concentração de ADN é adequada para uma análise de mutação.

Nota: Se for necessária uma nova extração ou diluição, repita a reação de controlo para confirmar que a concentração de ADN é adequada para utilização.

Para gerar ficheiros de relatório, clique em Report (Relatório). Aparecerá a janela "Report Browser" (Browser de relatórios). Selecione KRAS Analysis Report (Relatório de análise KRAS) em Templates (Modelos) e, em seguida, clique em Show (Mostrar) (Figura 10).

Nota: Os relatórios podem ser guardados numa localização alternativa em formato Web Archives, clicando no botão Save As (Guardar como) no canto superior esquerdo de cada relatório.

Figura 10. Seleção de "KRAS Analysis Report" (Relatório de análise KRAS). 1 = "Report" (Relatório); 2 = janela "Report Browser" (Browser de relatórios); 3 = seleção "KRAS Analysis Report" (Relatório de análise KRAS); 4 = "Show" (Mostrar).

Protocolo: deteção de mutações KRAS

Este protocolo serve para a deteção de mutações KRAS.

Pontos importantes antes de começar

- Depois de ter passado o processo de avaliação de amostra, uma amostra pode ser testada utilizando os ensaios de mutação KRAS.
- Para uma utilização eficiente do therascreen KRAS RGQ PCR Kit, as amostras têm de ser agrupadas em lotes de 7 (para encher o rotor de 72 poços). A utilização de lotes mais pequenos faz com que possam ser testadas menos amostras com o therascreen KRAS RGQ PCR Kit.
- Antes da primeira utilização do instrumento Rotor-Gene Q MDx 5plex HRM, certifique-se de que está instalada a versão de software correta do *therascreen* KRAS Assay Package, correspondente à versão de software Rotor-Gene Q (consulte Anexo 2: Instalação do therascreen KRAS Assay Package).

Procedimento

 Etiquete 8 tubos de microcentrifugação (não fornecidos) de acordo com cada mistura de reação correspondente, indicada na tabela abaixo. Prepare misturas principais (mistura de reação de controlo ou de mutação [CTRL, 12ALA, 12ASP, 12ARG, 12CYS, 12SER, 12VAL ou 13ASP] juntamente com polimerase *Taq* de ADN [Taq]) suficientes para as amostras de ADN, uma reação de controlo positivo (Positive Control, PC) KRAS (tubo do PC) e uma reação de água isenta de nuclease para controlo sem modelo (tubo do NTC), de acordo com os volumes indicados na tabela. Inclua reagentes para 1 amostra suplementar para permitir uma quantidade suficiente para a preparação da PCR. As misturas principais contêm todos os componentes necessários para a PCR, exceto a amostra.
Tubo de ensaio e de mistura de reação	Volume da mistura de reação	Volume da polimerase <i>Taq</i> de ADN (Taq)
Controlo (tubo da CTRL)	19,76 µl x (n + 1)	0,24 µl x (n + 1)
12ALA (tubo 12ALA)	19,76 µl x (n + 1)	0,24 µl x (n + 1)
12ASP (tubo 12ASP)	19,76 µl x (n + 1)	0,24 µl x (n + 1)
12ARG (tubo 12ARG)	19,76 µl x (n + 1)	0,24 µl x (n + 1)
12CYS (tubo 12CYS)	19,76 µl x (n + 1)	0,24 µl x (n + 1)
12SER (tubo 12SER)	19,76 µl x (n + 1)	0,24 µl x (n + 1)
12VAL (tubo 12VAL)	19,76 µl x (n + 1)	0,24 µl x (n + 1)
13ASP (tubo 13ASP)	19,76 µl x (n + 1)	0,24 µl x (n + 1)

* n = número de reações (amostras + controlos).

Prepare mistura principal suficiente para 1 amostra suplementar (n + 1) para garantir uma quantidade suficiente para a preparação da PCR. O valor n não deverá exceder 7 (mais controlos), uma vez que 7 é o número máximo de amostras que podem ser incluídas numa execução.

- Misture os reagentes descongelados invertendo cada tubo 10 vezes para evitar concentrações localizadas de sais. Centrifugue brevemente o tubo para recolher o conteúdo no fundo do tubo.
- Ajuste uma pipeta para um volume inferior ao volume da mistura de reação total; misture muito bem as misturas principais aspirando totalmente para cima e para baixo 10 vezes.
- 4. Acrescente imediatamente 20 µl de mistura principal a cada tubo de tiras de PCR apropriado.

Nota: Consulte a Tabela 5 para obter a configuração do tubo enquanto prepara as misturas de reação. Para a deteção de mutações KRAS, as misturas principais devem ser adicionadas a 8 tubos do PC, 8 tubos do NTC e a 8 tubos para cada amostra de ADN.

	Controlos				Númer	Número de amostra			
Ensaio	PC	NTC	1	2	3	4	5	6	7
CTRL	1*	9	17	25	33	41	49	57	65
12ALA	2	10	18	26	34	42	50	58	66
12ASP	3	11	19	27	35	43	51	59	67
12ARG	4	12	20	28	36	44	52	60	68
12CYS	5	13	21	29	37	45	53	61	69
12SER	6	14	22	30	38	46	54	62	70
12VAL	7	15	23	31	39	47	55	63	71
13ASP	8	16	24	32	40	48	56	64	72

Tabela 5. Configuração de execução no bloco de carregamento para deteção de mutações do KRAS

* Os números representam as posições no bloco de carregamento e indicam a posição final no rotor.

- Adicione imediatamente 5 µl de água isenta de nuclease para controlo sem modelo (No Template Control, NTC) aos tubos do NTC (posições de tubo 9–16) e coloque as respetivas tampas nos tubos.
- Adicione 5 µl de cada amostra de ADN aos tubos de amostra (posições de tubo 17-72) e coloque as respetivas tampas nos tubos.
- Adicione 5 µl de controlo positivo (Positive Control, PC) KRAS aos tubos do PC (posições de tubo 1–8) e coloque as respetivas tampas nos tubos.
- 8. Utilizando um marcador permanente, marque as tampas dos primeiros tubos na posição numérica mais baixa em cada um dos tubos de 4 tiras de PCR (por ex., posições 1, 5, 9 etc.) para indicar a orientação para carregamento dos tubos no rotor de 72 poços do instrumento Rotor-Gene Q MDx 5plex HRM.
- 9. Inverta 4 vezes os tubos com tampas, para misturar a amostra com a mistura de reação.
- 10. Coloque todos os tubos de 4 tiras de PCR nas posições apropriadas do rotor de 72 poços, de acordo com a configuração de execução (Tabela 5), utilizando as marcas para orientação.

Nota: Em cada execução de PCR podem ser incluídas, no máximo, 7 amostras. Se o rotor não ficar totalmente ocupado, todas as posições não utilizadas do rotor têm de

ser preenchidas com tubos vazios com tampa. Isto garante que é mantida a eficiência térmica do instrumento Rotor-Gene Q MDx 5plex HRM.

- Coloque o rotor de 72 poços no instrumento Rotor-Gene Q MDx 5plex HRM. Certifique-se de que o anel de aperto (fornecido com o instrumento Rotor-Gene Q MDx 5plex HRM) é colocado por cima do rotor para prender os tubos durante a execução.
- Clique duas vezes no ícone therascreen KRAS Locked Template (Modelo bloqueado do therascreen KRAS) do ambiente de trabalho do computador portátil ligado ao instrumento Rotor-Gene Q MDx 5plex HRM (Figura 11) para iniciar o software Rotor-Gene Q MDx 5plex HRM.

Figura 11. O ícone "therascreen KRAS Locked Template" (Modelo bloqueado do therascreen KRAS).

O separador "Setup" (Configuração) é apresentado como predefinição (Figura 12).

Setup						Andrea .
n come display ministeres and point to fer an Carplete fer felds and GAS Dar Rounder pay and Name Response DAS CE Role anglete Version : 302	ndje to begin the num		76 = 0			
	Lapset of the po	fing adapter		 		
ent Sanche ander: angen Name.	Pastan1 PC Careal	Product 3 Not count				Produce (4) Ford sound
	Position.2 WTC Control					Produce 10. Not cared
	Produce 3 Strict cond					Products? For used
	Paninas i Defining					Protocial Telescont
	Province 5 Test receil					Postar 13 Dif setd
	Province & Nef word,					Product 75 Not word
	Parlan.7 Bol stort					Poster 71 For and
	Public					Printer

Figura 12. 1 = separador "Setup" (Configuração); 2 = caixa "Locking Ring Attached" (Anel de aperto anexado).

- Certifique-se de que o anel de aperto está anexado adequadamente e marque a caixa Locking Ring Attached (Anel de aperto anexado). Feche a tampa do instrumento Rotor-Gene Q MDx 5plex HRM.
- Introduza a ID da execução no campo Run ID (ID da execução) de acordo com a convenção de nomenclatura local.
- 15. Introduza o nome da amostra no campo de Sample Name (Nome da amostra) de acordo com a convenção de nomenclatura local e prima a tecla de retrocesso.

Isto irá adicionar o nome da amostra à lista de amostras em baixo e atribuir à amostra uma "Sample ID" (ID de amostra) (1, 2, 3, etc.). Além disso, o painel "Layout of the pipetting adapter" (Configuração do adaptador de pipetagem), no lado direito, será atualizado para incluir o nome da amostra (Figura 13).

Nota: No painel "Layout of the pipetting adapter" (Configuração do adaptador de pipetagem), verifique se o nome de amostra adicionado ficou destacado através de uma alteração da cor e se todos os 8 ensaios na coluna por baixo do círculo da amostra estão destacados (Figura 13).

Nota: Podem ser adicionadas, no máximo, 7 amostras. As ID de amostras (nos círculos de amostras) serão atribuídas automaticamente, de 1 a 7.

Nota: Os nomes de amostras com mais de 8 caracteres poderão não estar totalmente visíveis no painel "Layout of the pipetting adapter" (Configuração do adaptador de pipetagem).

Alternativamente, podem ser importados nomes de amostras armazenados em formato *.smp (ficheiro de amostra Rotor-Gene Q) ou formato *.csv (valores separados por vírgulas) utilizando o botão Import Samples (Importar amostras). Os nomes de amostra são introduzidos automaticamente utilizando este método.

Figura 13. Introdução de "Run ID" (ID da execução) e de "Sample Name" (Nome da amostra). 1 = campo de diálogo "Run ID" (ID da execução); 2 = "Import Samples" (Importar amostras) (não disponível com a versão de software 2.1); 3 = campo de diálogo "Sample Name" (Nome da amostra); 4 = lista de amostras; 5 = painel "Layout of the pipetting adapter" (Configuração do adaptador de pipetagem); 6 = círculo de amostra destacado e coluna de 8 ensaios por baixo.

 Repita o passo 14 para introduzir os nomes de todas as amostras adicionais (Figura 14).

Nota: Para editar um nome de amostra, clique no respetivo Sample Name (Nome da amostra) na lista de amostras; a amostra selecionada será apresentada no campo Sample Name (Nome da amostra) acima. Edite o nome da amostra de acordo com a convenção de nomenclatura local e prima a tecla de retrocesso para atualizar o nome.

Inte	1		lie?n	peur .		1			holes	
KA Kase Represent FING CC Refer Public Refer Notice Represent State Public Refer Notice Translate Venues 133	Nates									
Res 10 [DNA Sargia Assessment Input Sargia	L									1
Seebs	Protect PC Const	Parties 7 Sector 7 Sector 7	Personal 17						Paster II. No. and	
1759150 - 1268874998 5 septh - 2 septh - 2 septh - 4 septh - 4 septh - 5 septh -	Paster.2 9/2 Carear	Partier 17	Q Series Software						Product II Not cont	
6. Sergik 6 7. Sergik 7 8. Sergik 9	Postars3 Service 1 Control	0	Warning - These are un Peases fill all unused po De you with to caritine	used Rotor Tubes. solices, with ampty halo ef		Pulline 41 And good	Painter 10 Not yeard	Paster 51 Scient	Frontier 17 Ref aread	
	Produce 4 Gargin 2 Cardina		E	ot	-				Protect[] Not cont	
	Profests Sanja 3 Cantal	Particul 12								
	Protection Sample 4 Cantal	Parison 14 Still and							Profess 78 State and	
	Politikari? Sangh 5 Cantal	Product 11 The seal							Parlan D Ref and	
	Poster 8 Larger 6									

Figura 14. Introdução de nomes de amostras adicionais no campo de diálogo "Sample Name" (Nome da amostra). 1 = campo de diálogo "Sample Name" (Nome da amostra); 2 = lista de amostras; 3 = painel "Layout of the pipetting adapter" (Configuração do adaptador de pipetagem) com nomes de amostras adicionais.

17. Quando tiverem sido introduzidos todos os nomes de amostras, certifique-se de que os mesmos estão corretos. Caso necessário, adicione quaisquer informações adicionais no campo Notes (Notas) e, em seguida, clique em Start Run (Iniciar execução) (Figura 15).

Nota: Se alguma posição do rotor não estiver a ser utilizada, é apresentado um "Warning" (Aviso) (Figura 15 e Figura 16) recordando o utilizador de que todas as posições não utilizadas do rotor devem ser ocupadas por tubos vazios com tampas. Certifique-se de que todas as posições não utilizadas do rotor estão ocupadas com tubos vazios com tampas e clique em OK para prosseguir.

Figura 15. 1 = campo de diálogo "Notes" (Notas); 2 = "Start Run" (Iniciar execução); 3 = "Warning" (Aviso) sobre as posições do rotor não utilizadas.

Figura 16. "Warning" (Aviso) sobre as posições do rotor não utilizadas.

 Na janela Save As (Guardar como), selecione um nome de ficheiro apropriado e guarde a execução da PCR como um ficheiro de execução *.rex na localização selecionada (Figura 17).

Figura 17. Guardar o ficheiro da execução.

A execução da PCR inicia-se.

Nota: Quando a execução é iniciada, o separador "Run Progress" (Progresso da execução) abre-se automaticamente para mostrar o gráfico da temperatura e o tempo restante da execução (Figura 18).

Figura 18. Separador "Run Progress" (Progresso da execução).

Quando a execução termina, abre-se automaticamente o separador "Analysis" (Análise).

Nota: Se o separador "Analysis" (Análise) não abrir, clique no separador "Analysis" (Análise) (Figura 19).

Nota: Na secção "Interpretação de resultados", é apresentada uma explicação do método de cálculo.

Figura 19. O separador "Analysis" (Análise) e a apresentação de resultados. 1 = separador "Analysis" (Análise); 2 = painel "Run Controls, Positive Control" (Controlos de execução, controlo positivo); 3 = painel "Run Controls, Negative Control" (Controlos de execução, controlo negativo); 4 = "Sample Result Table" (Tabela de resultados de amostras); 5 = coluna "KRAS Mutation Status" (Estado da mutação KRAS).

Os resultados do ensaio serão apresentados como se segue (Figura 19).

- O painel "Run Controls, Positive Control" (Controlos de execução, controlo positivo): se os resultados se encontrarem dentro do intervalo aceitável, o "Positive Control Status" (Estado do controlo positivo) irá indicar "Valid" (Válido); caso contrário, irá indicar um resultado "Invalid" (Inválido).
- O painel "Run Controls, Negative Control" (Controlos de execução, controlo negativo): se os resultados "NTC" e "Internal Control" (Controlo interno) se encontrarem dentro dos intervalos aceitáveis, o "Negative Control Status" (Estado do controlo negativo) irá indicar "Valid" (Válido); caso contrário, irá indicar um resultado "Invalid" (Inválido).

- O painel "Sample Result Table" (Tabela de resultados de amostras): na coluna "KRAS Mutation Status" (Estado de mutação KRAS), serão indicadas as mutações específicas das amostras positivas quanto a mutação.
- Para gerar ficheiros de relatório, clique em Report (Relatório). Aparecerá a janela "Report Browser" (Browser de relatórios). Selecione KRAS Analysis Report (Relatório de análise KRAS) em Templates (Modelos) e, em seguida, clique em Show (Mostrar) (Figura 20).

Nota: Os relatórios podem ser guardados numa localização alternativa em formato Web Archives, clicando em Save As (Guardar como) no canto superior esquerdo de cada relatório.

Figura 20. Seleção de "KRAS Analysis Report" (Relatório de análise KRAS). 1 = "Report" (Relatório); 2 = janela "Report Browser" (Browser de relatórios); 3 = seleção "KRAS Analysis Report" (Relatório de análise KRAS); 4 = "Show" (Mostrar).

Interpretação de resultados

Uma vez concluída uma execução, o *therascreen* KRAS Assay Package efetua automaticamente a análise e as determinações de mutação. A informação apresentada a seguir explica como o *therascreen* KRAS Assay Package efetua a análise e as determinações de mutação.

Nota: Para obter informações sobre a análise manual, consulte Apêndice 1: Protocolo *manual* do therascreen KRAS RGQ PCR Kit.

O ciclo da PCR a que a fluorescência de uma determinada reação passa um valor limiar é definido como o valor de C_T . O valor de C_T indica a quantidade de ADN específico de entrada. Valores baixos de C_T indicam níveis de entrada de ADN mais elevados, e valores altos de C_T indicam níveis de entrada de ADN mais baixos. As reações com um valor C_T são classificadas como amplificação positiva.

O software Rotor-Gene Q realiza a interpolação dos sinais de fluorescência entre quaisquer 2 valores registados. Os valores de C⊺ podem, portanto, ser quaisquer números reais (não limitado a números inteiros) dentro do intervalo de 0 a 40.

Para o *therascreen* KRAS RGQ PCR Kit, o valor limiar está definido para 0,05 unidades de fluorescência relativa. Este valor é configurado no *therascreen* KRAS Assay Package para os canais Green e Yellow. O valor limiar foi definido durante o desenvolvimento do *therascreen* KRAS RGQ PCR Kit.

É efetuado um cálculo para determinar o valor de ΔC_T , utilizando a equação:

 ΔC_T = [valor de C_T do ensaio de mutação] – [valor de C_T do ensaio de controlo]

Os controlos da execução (controlo positivo, NTC e controlos internos) são avaliados para garantir que estão presentes valores aceitáveis de C_T e que as reações estão a funcionar corretamente.

Os valores de ΔC_T da amostra são calculados como a diferença entre o C_T do ensaio de mutação e o C_T do ensaio de controlo da mesma amostra. As amostras são classificadas como sendo positivas quanto a mutação, se tiverem um ΔC_T inferior ou igual ao valor de ΔC_T de cutoff desse ensaio. Acima deste valor, a amostra poderá conter menos do que a percentagem de mutação capaz de ser detetada pelo *therascreen* KRAS RGQ PCR Kit (estar para além do limite dos ensaios) ou a amostra poderá ser negativa quanto a mutação, o que seria indicado como "No Mutation Detected" (Nenhuma mutação detetada).

A inexistência de amplificação em reações de mutação será classificada como "No Mutation Detected" (Nenhuma mutação detetada). Os valores de ΔC_T calculados a partir da amplificação de fundo são supostamente superiores aos valores de ΔC_T de cut-off; a amostra será classificada como "No Mutation Detected" (Nenhuma mutação detetada).

Os resultados do ensaio serão indicados como "Mutation Positive" (Positivo quanto a mutação), "No Mutation Detected" (Nenhuma mutação detetada), "Invalid" (Inválido) ou, se um controlo da execução falhar, "Run Control Failed" (Falha de controlo de execução). Para as amostras positivas quanto a mutação, serão indicadas as mutações específicas.

Os outros resultados possíveis que podem ser indicados são abordados neste manual, em "Protocolo: avaliação de amostras de ADN".

Raramente, um tumor poderá conter mais do que uma mutação. Nesses casos, será identificada a mutação que produz o valor de ΔC_T mais baixo.

Guia de resolução de problemas

Este guia de resolução de problemas pode ser útil para resolver quaisquer problemas que possam surgir. Para obter mais informações, consulte também a página de perguntas frequentes (Frequently Asked Questions, FAQs) no nosso Centro de apoio técnico: www.qiagen.com/FAQ/FAQList.aspx. Os cientistas da Assistência Técnica da QIAGEN estão sempre prontos a responder a qualquer questão que possa surgir sobre informações e/ou protocolos constantes deste manual ou sobre as tecnologias de amostragem e ensaio (para informações de contacto, visite **www.qiagen.com**).

		Comentarios e sugestões
Res	ultados inválidos	
a)	As condições de armazenamento de um ou mais componentes não estavam em conformidade com as instruções indicadas em Armazenamento e manuseamento de reagentes.	Verifique as condições de armazenamento e o prazo de validade dos reagentes (ver a etiqueta) e, se necessário, utilize um novo Kit.
b)	O prazo de validade do therascreen KRAS RGQ PCR Kit expirou.	Verifique as condições de armazenamento e o prazo de validade dos reagentes (consulte a etiqueta) e, se necessário, utilize um novo Kit.
Am	ostras de NTC apresentam resultados pos	sitivos no canal FAM.
	Ocorreu contaminação durante a preparação da PCR.	Repita a PCR com novos reagentes nas réplicas. Se possível, feche os tubos de PCR diretamente após adicionar a amostra a ser testada. Certifique-se de que o espaço de trabalho e os instrumentos são descontaminados regularmente.

Comentários e sugestões

Alarmes gerados pelo therascreen KRAS Assay Package

A Tabela 6 apresenta uma lista dos possíveis alarmes que podem ser gerados pelo *therascreen* KRAS Assay Package, os respetivos significados e as ações a tomar.

Alarme	Significado	Ação a tomar
PC_CTRL_ASSAY_FAIL	Execução de PCR inválida – CT de FAM fora do intervalo do controlo positivo na reação de controlo.	Repita toda a execução de PCR.
PC_MUTATION _ASSAY_FAIL	Execução de PCR inválida – CT de FAM fora do intervalo para uma ou mais reações de controlo de mutação.	Repita toda a execução de PCR.
PC_CTRL_INVALID _DATA	Execução de PCR inválida – Não é possível interpretar os dados de fluorescência no controlo positivo (mistura da reação de mutação).	Repita toda a execução de PCR.
PC_MUTATION _INVALID_DATA	Execução de PCR inválida – Não é possível interpretar os dados de fluorescência no controlo positivo (mistura da reação de mutação).	Repita toda a execução de PCR.
NTC_INT_CTRL_FAIL	Execução de PCR inválida – controlo interno acima do intervalo do controlo negativo.	Repita toda a execução de PCR.
NTC_INT_CTRL _EARLY_CT	Execução de PCR inválida – controlo interno abaixo do intervalo do controlo negativo.	Repita toda a execução de PCR.
NTC_INVALID_CT	Execução de PCR inválida – FAM inválido (inferior ao limite) para o controlo negativo.	Repita toda a execução de PCR.
NTC_INVALID_DATA	Execução de PCR inválida – não é possível interpretar os dados de fluorescência no controlo negativo.	Repita toda a execução de PCR.
SAMPLE_CTRL _INVALID_DATA	Execução de PCR inválida – não é possível interpretar os dados de fluorescência no controlo da amostra.	Prepare uma nova execução de PCR para repetir a(s) amostra(s) relevante(s).

Tabela 6. Aları	mes do theras	creen KRAS Ass	ay Package
-----------------	---------------	----------------	------------

SAMPLE_CTRL _HIGH_CONC	Amostra inválida – Cī de FAM demasiado baixo no controlo da amostra.	Dilua a amostra para aumentar o valor do C _T do controlo. Esta diluição deverá ser calculada assumindo que diluindo 1:1 com a água fornecida no kit, aumentará o C _T em 1,0; uma vez diluída a amostra, prepare uma nova execução de PCR para repetir a amostra.
SAMPLE_CTRL_FAIL	Amostra inválida – C⊺ de FAM demasiado alto na reação de controlo da amostra.	Prepare uma nova execução de PCR para repetir a amostra. Se der inválida na repetição da execução de PCR, extraia a amostra de uma ou mais secções de FFPE fresca(s). Prepare uma nova execução de PCR para testar a extração fresca. Se der inválida, repita esta segunda extração. Se a amostra não der um resultado válido após esta execução, é atribuído à amostra um estado de mutação indeterminado, e não deverão ser realizados mais testes.
SAMPLE_INT_CTRL _FAIL	C⊤ demasiado alto (ou sem C⊤) para o controlo interno (HEX), canal FAM negativo quanto a mutação.	Se for atribuído à amostra o estado de válido – nenhuma ação necessária. Amostras CRC: Se for atribuído à amostra o estado de inválido, prepare uma nova execução de PCR para repetir a amostra. Se der inválida na repetição da execução de PCR, extraia a amostra de uma ou mais secções de FFPE fresca(s). Prepare uma nova execução de PCR para testar a extração fresca. Se der inválida, repita esta segunda extração. Se a amostra não der um resultado válido após esta execução, é atribuído à amostra um estado de mutação indeterminado, e não deverão ser realizados mais testes. Amostras NSCLC: se for atribuído à amostra o estado inválido, dilua a amostra restante 1 em 8 com água do tubo marcado DIL, garantindo que o volume final é superior a 40 µl (por ex., 10 µl de ADN e 70 µl de água do tubo

		marcado DIL). Prepare uma nova execução de PCR para repetir a amostra. Se der inválida na repetição da execução de PCR, extraia a amostra de uma ou mais secções de FFPE fresca(s). Prepare uma nova execução de PCR para testar a extração fresca. Se inválido, dilua a amostra restante 1 em 8 com água do tubo marcado DIL, garantindo que o volume final é superior a 40 µl; em seguida, teste esta diluição. Se a amostra não der um resultado válido após esta execução, é atribuído à amostra um estado de mutação indeterminado, e não deverão ser realizados mais testes.
SAMPLE_INT_CTRL _EARLY_CT	Tubo de mutação inválido – Cτ HEX demasiado baixo para a amostra (controlo interno)	Se for atribuído à amostra o estado de válido – nenhuma ação necessária. Se for atribuído à amostra o estado de inválido, prepare uma nova execução de PCR para repetir a amostra. Se der inválida na repetição da execução de PCR, extraia a amostra de uma ou mais secções de FFPE fresca(s). Prepare uma nova execução de PCR para testar a extração fresca. Se der inválida, repita esta segunda extração. Se a amostra não der um resultado válido após esta execução, é atribuído à amostra um estado de mutação indeterminado, e não deverão ser realizados mais testes.
SAMPLE_INVALID _DATA	Tubo de mutação inválido – não é possível interpretar os dados de fluorescência no controlo interno.	Se for atribuído à amostra o estado de válido – nenhuma ação necessária. Se for atribuído à amostra o estado de inválido, prepare uma nova execução de PCR para repetir a amostra. Se der inválida na repetição da execução de PCR, extraia a amostra de uma ou mais secções de FFPE fresca(s). Prepare uma nova execução de PCR para testar a extração fresca. Se der

		inválida, repita esta segunda extração. Se a amostra não der um resultado válido após esta execução, é atribuído à amostra um estado de mutação indeterminado, e não deverão ser realizados mais testes.
MUTATION_EARLY_CT	Tubo de mutação inválido – C₁ FAM demasiado baixo para a amostra.	Se for atribuído à amostra o estado de válido – nenhuma ação necessária.
		Se for atribuído à amostra o estado de inválido, prepare uma nova execução de PCR para repetir a amostra. Se der inválida na repetição da execução de PCR, extraia a amostra de uma ou mais secções de FFPE fresca(s). Prepare uma nova execução de PCR para testar a extração fresca. Se der inválida, repita esta segunda extração. Se a amostra não der um resultado válido após esta execução, é atribuído à amostra um estado de mutação indeterminado, e não deverão ser realizados mais testes.
SAMPLE_POSITIVE _AND_INVALID	Uma ou mais mutações de uma amostra são válidas e positivas e, simultaneamente, uma ou mais mutações da mesma amostra são inválidas (é um aviso, não é um erro).	Nenhuma.

Controlo de qualidade

De acordo com o Sistema de Gestão da Qualidade da QIAGEN, com certificação ISO, todos os lotes do *therascreen* KRAS RGQ PCR Kit são testados relativamente a especificações predeterminadas para garantir a qualidade constante do produto.

Limitações

O teste foi concebido para detetar 7 mutações nos codãos 12 e 13 do gene KRAS. As amostras com resultados indicando "No Mutation Detected" (Nenhuma mutação detetada) poderão conter mutações KRAS não detetadas pelo ensaio (por ex., 13CYS).

A deteção de mutações depende da integridade da amostra e da quantidade de ADN amplificável presente no espécime. O procedimento deverá ser repetido no caso de a avaliação inicial do ADN na amostra indicar que a quantidade não é suficiente ou é demasiado grande para uma análise de mutação.

O therascreen KRAS RGQ PCR Kit é utilizado num procedimento de reação de polimerização em cadeia (Polymerase Chain Reaction, PCR). Tal como com todos os procedimentos de PCR, as amostras poderão ser contaminadas por fontes externas de ADN no ambiente do teste e pelo ADN do controlo positivo. Tenha portanto muito cuidado para evitar a contaminação das amostras e dos reagentes da mistura de reação.

O therascreen KRAS RGQ PCR Kit destina-se apenas para descriminar entre tipo selvagem e mutante. O teste foi concebido de tal maneira que cada reação de mutante é mais sensível para a mutação específica que está a ser medida. No entanto, em amostras em que é detetada uma mutação, poderá ocorrer reatividade cruzada com outras reações de mutação. Se mais de uma reação de mutante for positiva, o resultado é o que tem o ΔC_T mais baixo. O *therascreen* KRAS RGQ PCR Kit só está validado para tecido de CRC e NSCLC fixado em formalina e conservado em parafina (Formalin-Fixed Paraffin-Embedded, FFPE).

O *therascreen* KRAS RGQ PCR Kit só está validado para ser utilizado com o QIAamp DNA FFPE Tissue Kit. Apenas o Rotor-Gene Q MDx 5plex HRM foi validado para utilização com o *therascreen* KRAS RGQ PCR Kit.

Características de desempenho

Desempenho analítico

As características de desempenho específicas do *therascreen* KRAS RGQ PCR Kit foram determinadas por estudos que envolveram amostras de tecido FFPE recolhidas a partir de pacientes com CRC e NSCLC. Os métodos de colheita de amostras de NSCLC incluíram biopsia de núcleo com agulha (Core Needle Biopsy, CNB), punção aspirativa por agulha fina (Fine Needle Aspirate, FNA) e ressecção. Para cada tipo de amostra, foram utilizadas 8 linhas celulares humanas FFPE, 7 das quais continham mutações KRAS conhecidas detetadas pelo ensaio e um KRAS de tipo selvagem (ou seja, sem mutações nos codãos 12 e 13). O estado de mutação das amostras foi confirmado por sequenciação Sanger bidirecional.

Cut-off

Foram testadas 225 amostras FFPE utilizando um método que segue a norma EP17-A (2004) (8) do CLSI para estabelecer os valores de cut-off do ensaio. O intervalo do C_T da reação de controlo foi estabelecido como sendo de 21,92 a 32,00. Os valores de cut-off, que se baseiam na diferença entre o C_T da reação de controlo e o C_T das reações mutantes (Δ C_T), são apresentados na Tabela 7.

	Ensaio de mutação									
	12ALA	12ASP	12ARG	12CYS	12SER	12VAL	13ASP			
Cut-off (≤∆Cī)	8,0	6,6	8,0	8,0	8,0	7,5	7,5			

Tabela 7 Valores de cut-off estabelecidos para cada ensaio de mutação.

Limite do branco

Para avaliar o desempenho do *therascreen* KRAS RGQ PCR Kit na ausência de modelo positivo mutante, e para assegurar que uma amostra em branco não gera um sinal analítico que possa indicar uma baixa concentração de mutação, foram avaliadas amostras sem modelo. Os resultados demonstraram a não existência de qualquer controlo detetável ou quaisquer valores C_T de mutantes em qualquer um dos tubos de reação de controlo ou de mutação (os valores de C_T dos controlos internos foram todos válidos).

Comparação com o método de referência analítica: CRC

Foram realizados dois estudos para demonstrar a concordância no estado de mutação de amostras de CRC testadas com o *therascreen* KRAS RGQ PCR Kit em comparação com a sequenciação bidirecional. Um total de 137 das amostras FFPE apresentou resultados válidos tanto para o *therascreen* KRAS RGQ PCR Kit como para a sequenciação bidirecional.

Os resultados globais, excluindo 6 amostras de sequenciação Sanger bidirecionais que falharam, são apresentados na Tabela 8. A Tabela 9 apresenta a análise da concordância entre o *therascreen* KRAS RGQ PCR Kit e a sequenciação bidirecional.

		C)eterminaçõ	io de mutaç	ão por sequ	venciação b	oidirecional			
		Neg.	12ALA	12ARG	12ASP	12CYS	12SER	12VAL	13ASP	Total
PCR Kit	Negativo	80	-	-	1	-	-	-	1	82
vs RGQ	Positivo 12ALA	-	3	-	-	-	-	-	-	3
en KR⊅	Positivo 12ARG	-	-	-	1	-	-	-	-	1
erascre	Positivo 12ASP	-	-	-	20	-	-	-	-	20
pelo <i>th</i>	Positivo 12CYS	-	-	-	-	3	-	-	-	3
inação	Positivo 12SER	-	-	-	-	-	-	-	-	0
Determ	Positivo 12VAL	2	_	-	-	-	_	14	-	16
—	Positivo 13ASP	1	-	-	-	-	-	-	11	12
	Total	83	3	0	22	3	0	14	12	137

Tabela 8. therascreen KRAS RGQ PCR Kit vs. sequenciação Sanger bidirecional

Tabela 9. Análise de concordância

Medição de concordância	Frequência (%)	Intervalo de confiança (IC) 95%
Concordância na percentagem global	152/157 (96,82)	93,69–98,44
Concordância na percentagem de positivos	72/74 (96,30)	92,63–98,63
Concordância na percentagem de negativos	80/83 (96,39)	91,65–98,19

Como suplemento dos dados do primeiro estudo, foi avaliado um segundo conjunto exclusivo de amostras. Foi colhido um conjunto de 271 amostras FFPE de CRC; 250 amostras de estado de mutação desconhecido e 21 amostras de estado de mutação conhecido (para incluir mutações raras) foram comparadas com a sequenciação Sanger bidirecional, conforme descrito acima.

Foi realizada a análise de concordância em 247 amostras, com resultados válidos tanto pelo *therascreen* KRAS RGQ PCR Kit como por sequenciação bidirecional. Observou-se 9 amostras discordantes. A concordância na percentagem global foi de 96,82%. Os dados suportam o desempenho exato do *therascreen* KRAS RGQ PCR Kit (Tabela 10 e Tabela 11).

	Determinação de mutação por sequenciação bidirecional										
		Neg.	12ALA	12ARG	12ASP	12CYS	12SER	12VAL	13ASP	Total	
PCR Kit	Negativo	132	-	-	-	-	1	-	-	133	
s RGQ	Positivo 12ALA	-	10	-	-	-	-	-	-	10	
en KR⊅	Positivo 12ARG	5	-	5	-	-	-	-	-	10	
erascree	Positivo 12ASP	-	-	-	31	-	-	-	-	31	
pelo #	Positivo 12CYS	1	-	-	-	11	-	_	-	12	
nação	Positivo 12SER	-	-	-	-	-	13	-	-	13	
Determi	Positivo 12VAL	2	-	-	-	-	-	25	-	27	
_	Positivo 13ASP	-	-	-	-	-	-	-	11	11	
	Total	140	10	5	31	11	14	25	11	247	

Tabela 10. therascreen KRAS RGQ PCR Kit versus	Sequenciação San	ger bidirecional (2.° estudo)
--	------------------	-------------------------------

Tabela 11. Análise da concordância (segundo estudo)

Medição de concordância	Frequência (%)	Intervalo de confiança (IC) 95%
Concordância na percentagem global	238/247 (96,36)	93,73–98,09
Concordância na percentagem de positivos	106/107 (99,07)	95,64–99,95
Concordância na percentagem de negativos	132/140 (94,29)	89,93–97,13

Comparação com o método de referência analítica: NSCLC

Para demonstrar a concordância no estado de mutação de amostras de NSCLC testadas com o *therascreen* KRAS RGQ PCR Kit em comparação com a sequenciação Sanger bidirecional, foram colhidas amostras clínicas FFPE de NSCLC por ressecção, CNB ou FNA. O ADN foi extraído de cada amostra, antes do teste com o *therascreen* KRAS RGQ PCR Kit. Os resultados deste teste foram comparados com os resultados obtidos por sequenciação Sanger bidirecional.

Um total de 360 amostras apresentou um resultado válido para o *therascreen* KRAS RGQ PCR Kit e para a sequenciação Sanger bidirecional, com 340 amostras de resultados concordantes.

A concordância entre o *therascreen* KRAS RGQ PCR Kit e a sequenciação bidirecional é apresentada na Tabela 12. Duas amostras apresentaram determinação de mutação dupla pela sequenciação Sanger bidirecional. Como uma mutação foi idêntica ao resultado do *therascreen* KRAS RGQ PCR Kit, estas amostras foram classificadas como concordantes para a análise de concordância global, concordância positiva e concordância negativa (Tabela 13).

	Determinação de mutação por sequenciação bidirecional										
		Neg.	12ALA	12ARG	12ASP	12CYS	12SER	12VAL	13ASP	Total	
Ę	Negativo	132	_	-	-	-	1	-	-	133	
iscreen KRAS RGQ PCR	Positivo 12ALA	-	10	-	-	-	-	-	-	10	
	Positivo 12ALA_ 12CYS	5	_	5	-	-	-	_	-	10	
	Positivo 12ARG	-	-	-	31	-	-	-	-	31	
elo ther	Positivo 12ASP										
ação pe	Positivo 12CYS	1	-	-	-	11	-	-	-	12	
termino	Positivo 12SER	-	_	-	_	-	13	_	_	13	
Det	Positivo 12VAL	2	-	-	-	-	-	25	-	27	
	Positivo 13ASP	_	_	_	_	_	_	_	11	11	
	Total	140	10	5	31	11	14	25	11	247	

Tabela 12. therascreen KRAS RGQ PCR Kit versus Sequenciação Sanger bidirecional

Tabela 13. Análise de concordância

Medição de concordância	Frequência (%)	Intervalo de confiança (IC) 95%
Concordância na percentagem global	340/360 (94,44)	92,03–96,29
Concordância na percentagem de positivos	79/80 (98,75)	94,21–99,94
Concordância na percentagem de negativos	261/280 (93,21)	90,20-95,51

Limite de deteção (Limit of Detection, LOD)

O intervalo de trabalho do *therascreen* KRAS RGQ PCR Kit baseia-se na quantidade de ADN amplificável no espécime, conforme determinado pelo valor de C_T da reação de controlo. O intervalo de entrada indicado para o ensaio é definido pelo intervalo do C_T de controlo préespecificado de 21,92 a 32,00. O LOD é a percentagem mínima de ADN mutante que pode ser detetada num fundo de tipo selvagem quando o ADN amplificável total está dentro do intervalo de entrada indicado e ainda abaixo do valor ΔC_T do cut-off limiar.

CRC

Foi efetuado um estudo para determinar o LOD de cada uma das 7 reações específicas de mutação incorporadas no *therascreen* KRAS RGQ PCR Kit. Para o *therascreen* KRAS RGQ PCR Kit, o limite de deteção de ADN mutante num fundo de ADN de tipo selvagem é definido como o fator de diluição mais baixo ao qual 95% das réplicas de teste de cada amostra positiva quanto a mutação foram determinadas como sendo positivas.

Foram aplicados modelos de regressão logística individualmente a cada ensaio para os conjuntos de dados com níveis de entrada de ADN baixos e altos. Nestes modelos, a variável da resposta era a saída de binário da mutação detetada (detect = 1) e da mutação não detetada (detect = 0); a variável explicativa contínua era log₂ da % da diluição de mutação. Os LOD foram calculados como a percentagem da diluição de mutação que obteve uma probabilidade prevista de deteção de 0,95 (Tabela 14).

Ensaio	LOD C ₉₅ (percentagem de ADN mutante em ADN de tipo selvagem)
12ALA	0,77
12ARG	2,56
12ASP	6,43
12CYS	1,47
12SER	5,65
12VAL	1,60
13ASP	6,42

Tabela 14. Valores de LOD para cada ensaio de mutação utilizando linhas celulares FFPE

NSCLC

O LOD para os ensaios do *therascreen* KRAS RGQ PCR Kit foi determinado e verificado utilizando tecido de CRC. Estes resultados de LOD foram reverificados para tecido de NSCLC.

O estudo foi realizado em 2 partes. Na parte 1, 60 réplicas de 7 linhas celulares FFPE de NSCLC mutantes representantes de cada mutação foram diluídas ao LOD do respetivo ensaio e testadas. Todas as 60 réplicas válidas de linhas celulares FFPE de cada amostra avaliada demonstraram 100% de deteção para a respetiva reação de mutação no LOD avaliado.

Na parte 2, 96 réplicas de amostras FFPE de NSCLC clínicas representantes de cada mutação em 3 métodos de colheita (ressecção, CNB e FNA) foram testadas, após diluição ao LOD do respetivo ensaio.

As 96 réplicas válidas para 12ALA, 12ASP, 12ARG, 12VAL e 13ASP apresentaram uma determinação correta de 100%. Os ensaios para 12CYS e 12SER mostraram 95,8% de deteção no LOD.

Isto demonstra que o valor LOD determinado anteriormente é verificado para todos os ensaios de mutação ao avaliar amostras de tecido NSCLC e amostras clínicas FFPE NSCLC/linhas de células FFPE/amostras de pacientes correspondentes.

Entrada e linearidade de ADN

Efeito do nível de entrada do ADN em valores ΔC_{T}

Quando amostras a diferentes níveis de ADN total contêm a mesma proporção de ADN mutante, presume-se que os valores de ΔC_T medidos permaneçam consistentes. Foi utilizado ADN extraído de 8 linhas celulares FFPE para preparar pools de ADN com o C_T de reação de controlo mais baixo conseguido.

A Tabela 15 e a Tabela 16 apresentam o intervalo de diluição de cada reação de mutação e o valor de ΔC_T médio obtido a partir dos resultados. Os valores ΔC_T gerais são consistentes em todo o intervalo de trabalho do *therascreen* KRAS RGQ PCR Kit para todos os ensaios, demonstrando que o nível de ADN não terá impacto na exatidão da determinação de mutação da amostra.

ΔCr									
Ensaio	Diluição 1 C₁ de ~20–21	Diluição 2 C₁ de ~23–24	Diluição 3 C₁ de ~26–27	Diluição 4 C₁ de ~29–30	Diluição 5 C⊤ de ~32–33				
12ALA	1,56	1,25	1,16	1,14	1,27				
12ASP*	2,46	2,18	2,11	2,11	1,75				
12ARG	1,18	0,63	1,08	0,94	1,06				
12VAL	0,29	0,25	0,15	0,26	-0,1				
12SER	2,91	2,21	2,15	2,15	2,08				
12CYS	0,98	0,71	0,58	0,81	0,67				
13ASP	3,57	2,84	2,54	2,46	2,62				

Tabela 15. Efeito da entrada de ADN nos valores de ∆C₁ por todo o intervalo de C₁ da reação de controlo de entrada – linhas celulares FFPE de CRC

* O número total de réplicas para o 12ASP era 27.

ΔCτ									
Ensaio	Diluição 1 C⊤ de ~20–21	Diluição 2 C⊤ de ~23–24	Diluição 3 C₁ de ~26–27	Diluição 4 C₁ de ~29–30	Diluição 5 C₁ de ~32–33				
12ALA	3,40	3,25	3,11	2,90	3,31				
12ASP	3,63	2,92	2,55	2,46	-*				
12ARG	2,49	2,22	2,25	2,23	1,40				
12VAL	1,34	1,23	1,18	1,13	0,97				
12SER	5,34	4,50	4,30	3,92	_*				
12CYS	1,70	1,71	1,70	1,77	1,01				
13ASP	6,24	5,36	5,14	4,87	_*				

Tabela 16. Efeito da entrada de ADN nos valores de ∆C7 por todo o intervalo de C7 da reação de controlo de entrada – amostras FFPE de NSCLC

* Sem Cτ de reação de mutação devido a concentração baixa de ADN; desta forma, não foi calculado nenhum ΔCτ.

Eficácia da linearidade/amplificação como função da entrada de ADN

Foi demonstrada a eficácia da linearidade/amplificação da PCR para cada reação de mutação, relativamente à reação de controlo, através de todo o intervalo de trabalho do *therascreen* KRAS RGQ PCR Kit. A eficácia de amplificação foi calculada para cada uma das reações de mutação e reações de controlo como [2(-1/declive)] -1.

A eficácia de amplificação da reação de controlo comparada com a de mutação indica que ΔC_T e, consequentemente, a determinação de mutação, é consistente em todo o intervalo de trabalho do ensaio. Na Tabela 17 e na Tabela 18 é apresentado um resumo dos dados.

Eficácia da linearidade/amplificação como função da percentagem de mutação

O objetivo deste estudo era avaliar o efeito da amostra positiva mutante diluída em série na eficácia de amplificação, por todo o intervalo de trabalho do *therascreen* KRAS RGQ PCR Kit, começando por níveis de entrada de C₁ de, aproximadamente, C₁ de 22 a 23.

Foram inicialmente avaliados extratos de ADN de linhas celulares FFPE de CRC e amostras de NSCLC através de leituras de densidade ótica antes da realização da PCR com o *therascreen* KRAS RGQ PCR Kit. Foram depois preparados stocks de ADN a um C_T de reação de controlo correspondente a C_T de aproximadamente 23. Os stocks foram diluídos em série duas vezes de cada vez utilizando ADN de tipo selvagem, de modo a manter o ADN de tipo selvagem total constante, enquanto variava a percentagem de ADN mutante no modelo.

Foram preparadas pools de ADN suficientes para 6 réplicas por mutação. Foram calculados os dados de $C_T e \Delta C_T$ de cada mutação a cada ponto de diluição. Foi preparado um modelo de regressão linear que compara o C_T de reação de mutação com a diluição de entrada de ADN de log₂. O estudo mostrou que a diluição de mutações num contexto de concentração constante de ADN de tipo selvagem resultava em eficácias de amplificação que não variavam significativamente dos valores determinados no estudo de linearidade descrito anteriormente.

Amostra		Interceção	Erro padrão de interceção	Declive calculado	Erro padrão (declive)	Limite de confiança de 95% bilateral inferior (declive)	Limite de confiança de 95% bilateral superior (declive)	Eficácia de amplificação	Diferença em eficácias de amplificação
12ALA	C⊺ de controlo C⊺ 12ALA	21,060 22,476	0,060 0,103	-1,008 -0,987	0,007 0,013	-1,023 -1,013	-0,993 -0,961	0,989 1,019	0,03
12ARG	C⊺ de controlo C⊺ 12ARG	20,825 23,237	0,083 0,083	-1,035 -0,993	0,01 0,011	-1,056 -1,016	-1,014 -0,97	0,954 1,01	0,056
12ASP	C⊺ de controlo C⊺ 12ASP	20,385 21,347	0,13 0,065	-1,013 -1,015	0,16 0,008	-1,046 -1,032	-0,98 -0,999	0,982 0,979	-0,003
12CYS	C⊺ de controlo C⊺ 12CYS	23,437 24,289	0,063 0,039	-0,981 -0,961	0,01 0,006	-1,003 -0,974	-0,96 -0,947	1,026 1,058	0,032
12SER	C⊺ de controlo C⊺ 12SER	22,568 25,212	0,050 0,087	-1,003 -0,934	0,008 0,014	-1,02 -0,963	-0,986 -0,904	0,996 1,101	0,105
12VAL	C⊺ de controlo C⊺ 12VAL	21,208 21,532	0,047 0,043	-0,995 -0,972	0,006 0,005	-1,007 -0,983	-0,983 -0,961	1,007 1,04	0,033
13ASP	C⊺ de controlo C⊺ 12ASP	23,207 26,466	0,056 0,106	-1,001 -0,909	0,009 0,017	-1,02 -0,945	-0,982 -0,873	0,999 1,144	0,145

Tabela 17. Eficácia de amplificação em reações de controlo e mutação: linhas celulares de CRC

Amostra		Interceção	Erro padrão de interceção	Declive calculado	Erro padrão (declive)	Limite de confiança de 95% bilateral inferior (declive)	Limite de confiança de 95% bilateral superior (declive)	Eficácia de amplificação	Diferença em eficácias de amplificação
12ALA	C _T de controlo C _T 12ALA	22,74 24,11	0,04 0,16	-0,15 -1,06	0,02 0,07	-0,19 -1,20	-0,11 -0,93	0,94 1,01	0,069
12ARG	C _T de controlo C _T 12ARG	21,92 24,44	0,03 0,02	-0,07 -0,98	0,01 0,01	-0,09 -0,96	-0,05 -0,96	0,94 1,04	0,093
12ASP	C _T de controlo C _T 12ASP	21,73 22,69	0,05 0,03	-0,13 -0,97	-0,02 0,01	-0,17 -1,00	-0,08 -0,95	0,96 0,96	-0,001
12CYS	C _T de controlo C _T 12CYS	21,73 22,77	0,04 0,03	-0,11 -1,01	0,01 0,01	-0,14 -1,03	-0,08 -0,99	0,98 1,00	0,019
12SER	C⊺ de controlo C⊺ 12SER	22,03 25,34	0,05 0,03	-0,06 -0,97	0,02 0,01	-0,10 -0,99	-0,02 0,94	0,97 1,09	0,127
12VAL	C⊺ de controlo C⊺ 12VAL	22,13 23,34	0,04 0,08	-0,03 -0,95	0,02 0,03	-0,07 -1,01	0,01 -0,88	0,92 0,91	0,011
13ASP	C⊺ de controlo C⊺ 12ASP	22,63 25,14	0,02 0,07	-0,02 -0,94	0,01 0,03	0,001 -1,00	-0,04 -0,88	0,94 1,01	0,066

Tabela 18. Eficácia de amplificação em reações de controlo e mutação: amostras NSCLC

Substâncias interferentes

O objetivo deste estudo era avaliar o impacto de substâncias potencialmente interferentes no desempenho do *therascreen* KRAS RGQ PCR Kit. Este foi realizado através da análise do impacto de cada substância nos valores de ΔC_T e no estado de mutação das amostras de teste com recurso ao enriquecimento de experiências de várias concentrações. As substâncias potencialmente interferentes do processo de extração de ADN testadas foram Buffer AL, Buffer ATL, etanol, cera de parafina, proteinase K, Buffer AW1 de lavagem, Buffer AW2 de lavagem e xileno. O tampão de eluição final do kit, Buffer ATE, foi também testado como controlo em branco. Nas concentrações que se prevê encontrar em utilização normal, nenhuma das substâncias potencialmente interferentes tem impacto na capacidade do *therascreen* KRAS RGQ PCR Kit para distinguir entre amostras positivas e negativas quanto a mutação.

Para além do estudo de substâncias interferentes, foi avaliado o efeito potencial da necrose em amostras clínicas, para determinar se altos níveis de tecido necrótico em amostras de tumor têm qualquer impacto na capacidade de gerar dados válidos. A partir de um total de 421 amostras avaliadas como parte dos estudos de Comparação com o método de referência analítica, 29 destas amostras apresentavam necrose a um nível > 50%, conforme determinado por exame patológico. Destas 29 amostras, 28 apresentaram resultados válidos que eram concordantes com a sequenciação Sanger bidirecional. Apenas um resultado foi inválido, devido a ADN insuficiente.

Contaminação cruzada

O objetivo deste estudo era determinar a extensão da contaminação cruzada entre amostras de ADN utilizando o *therascreen* KRAS RGQ PCR Kit, o que, possivelmente, pode originar resultados falso-positivos. As potenciais fontes de contaminação cruzada incluem as seguintes:

- Extração de amostra (por ex., raspagem de lâminas)
- Pipetagem de amostras
- Fecho ("colocação de tampa") de tubos de amostra
- Contaminação dos reagentes do kit durante a utilização
- Carregamento de tubos de ensaio no instrumento Rotor-Gene Q MDx 5plex HRM

Para este estudo, foram utilizados padrões FFPE: o padrão tipo selvagem e o padrão 12ALA (uma vez que a reação 12ALA é a reação com o LOD mais baixo do kit). O estudo era constituído por 10 execuções de PCR destinadas a investigar o potencial de contaminação durante e entre execuções no instrumento Rotor-Gene Q MDx 5plex HRM. Nestas execuções de teste, foram utilizados tubos contendo DNA de tipo selvagem para testar relativamente a contaminação de ADN mutante.

Os resultados deste estudo indicaram não detetar qualquer contaminação em qualquer dos extratos de ADN de tipo selvagem que tinham o objetivo de detetar contaminação cruzada.

Exclusividade/reação cruzada

O therascreen KRAS RGQ PCR Kit é constituído por 8 reações separadas, que inclui uma reação de controlo individual que deteta uma região não polimórfica do gene KRAS, e 7 reações específicas da mutação. Não existe uma reação que meça especificamente a sequência KRAS de tipo selvagem no codão 12 ou 13. O resultado "No Mutation Detected" (Nenhuma mutação detetada) do KRAS, (ou seja, tipo selvagem) é determinado a partir da ausência de qualquer uma das 7 mutações que originam um resultado positivo quanto a mutação.

Por conseguinte, é necessário demonstrar a quantidade de amplificação não específica, ou a reatividade cruzada que ocorre em cada reação com quantidades excessivas de ADN de KRAS de tipo selvagem para garantir que não ocorrem resultados falso-positivos. Do mesmo modo, a amplificação não específica é avaliada pelas mutações KRAS que não se tenciona detetar através do ensaio. Isso demonstra que a quantidade de reatividade cruzada entre as reações mutantes não resulta em determinações de mutação erróneas na presença de quantidades excessivas de ADN mutante. Uma vez que a entrada de ADN para este ensaio se baseia no intervalo de C_T de controlo (21,92–32,00), a concentração mais elevada de entrada de ADN baseia-se em possuir um valor de C_T de controlo de, aproximadamente, 22. Amplificação não específica/reatividade cruzada: ADN de KRAS de tipo selvagem Foi abordada a quantidade de amplificação não-específica de ADN de tipo selvagem por misturas de reação concebidas para amplificar mutações específicas. Foram avaliadas 60 réplicas de ADN de linhas celulares FFPE de tipo selvagem e 60 amostras de NSCLC à concentração mais elevada de nível de entrada de ADN amplificável utilizando o *therascreen* KRAS RGQ PCR Kit.

Os valores de C_T foram, aproximadamente, 22–23. Os resultados demonstraram que os valores de ΔC_T ultrapassaram os cut-offs estabelecidos e pelo menos 95% das réplicas de tipo selvagem foram corretamente determinadas.

Amplificação não específica/reatividade cruzada/exclusividade: ADN de KRAS de mutação positiva

As amostras mutantes com elevada concentração de ADN de entrada foram testadas relativamente a todas as misturas de reação. As amostras de ADN foram preparadas a partir de cada uma das linhas celulares FFPE de CRC e de NSCLC de modo que o CT do controlo de reação correspondesse a, aproximadamente, 23. A partir destas diluições, foram avaliadas 6 réplicas de cada amostra de mutação. A percentagem de mutação na amostra foi regida pela percentagem de mutante no ADN da linha celular.

Os valores de ΔC_T médios apresentados na Tabela 19 e na Tabela 20 demonstram que existe reatividade cruzada entre reações mutantes. Em todos os casos, os resultados mostram que a mutação correta foi determinada com a reação de mutação correspondente (ou seja, o valor de ΔC_T mais baixo foi a determinação de mutação correta). Todos os outros casos de testes foram de não deteção ou fora do limiar do ΔC_T .

		∆C _r de ensaio							
ADN mutante	Cut-off	12ALA	12ASP	12ARG	12CYS	12SER	12VAL	13ASP	
12ALA	8	1,42*	12,66	NA	5,81†	2,78 [†]	6,31†	13,21	
12ASP	6,6	12,56	2,42*	NA	NA	13,44	11,21	13,55	
12ARG	8	13,12	11,56	1,12*	11,42	NA	13,43	12,66	
12CYS	8	14,2	12,48	9,23	0,98*	NA	7,96 †	12,88	
12SER	8	NA	13,39	13,31	NA	3,02*	12,99	13,97	
12VAL	7,5	6,83†	NA	NA	NA	13,38	0,28*	13,74	
13ASP	7,5	NA	13,29	13,89	NA	NA	14,36	4,5*	

Tabela 19. Reatividade cruzada (ΔCT) entre reações de mutação utilizando ADN de linha celular FFPE de CRC no intervalo de entrada alto

NA: sem reação cruzada.

* Valores ΔC_T das reações correspondentes.

 † ΔC_{T} de reações com reatividade cruzada abaixo do cut-off.

Tabela 20. Reatividade cruzada (∆CT) entre reações de mutação utilizando ADN de linha celular FFPE de NSCLC no intervalo de entrada alto

		ΔC _T de ensaio						
ADN mutante	Cut-off	12ALA	12ASP	12ARG	12CYS	12SER	12VAL	13ASP
12ALA	8	1,31*	12,8	NA	5,01†	2,26 [†]	5,57†	12,65
12ASP	6,6	12,61	1,66*	NA	NA	NA	10,3	12,60
12ARG	8	12,98	11,08	0,81*	11,24	NA	12,66	12,62
12CYS	8	NA	12,22	7,84 †	0,56*	NA	13,06	11,84
12SER	8	NA	12,87	13,21	NA	1,93*	13,25	12,93
12VAL	7,5	5,93†	14,29	NA	NA	13,14	0,45*	12,39
13ASP	7,5	NA	NA	NA	NA	NA	NA	2,02*

NA: sem reação cruzada.

* Valores △C^T das reações correspondentes.

 † ΔC_{τ} de reações com reatividade cruzada abaixo do cut-off.
Repetibilidade e reprodutibilidade

Os objetivos deste estudo pretendiam demonstrar a precisão do *therascreen* KRAS RGQ PCR Kit dentro do laboratório (repetibilidade) e entre laboratórios (reprodutibilidade). É registada a correção dos resultados de determinação de mutação e a precisão dos valores de ΔC_T (a diferença em valores de C_T entre uma Reação de mutação e uma Reação de controlo).

CRC

Para esta avaliação, foram utilizadas amostras clínicas de CRC. Um tipo selvagem e uma amostra de cada mutação foram testados com o *therascreen* KRAS RGQ PCR Kit utilizando 2 operadores em cada um de 3 locais, testando todas as amostras e controlos em 3 lotes de *therascreen* KRAS RGQ PCR Kits, todos os dias durante 5 dias, com 2 execuções por dia e 2 réplicas de cada amostra em cada execução. Os valores de C_T e Δ C_T obtidos para cada reação em cada amostra foram também analisados por análise dos componentes de variância.

A reprodutibilidade do *therascreen* KRAS RGQ PCR Kit foi demonstrada para amostras de tipo selvagem e mutantes de nível baixo (3 x LOD), com, pelo menos, 39/40 determinações de mutação corretas para todos os ensaios dos vários lotes, plataformas e operadores, dentro e entre laboratórios. A proporção prevista de testes de amostras 3 x LOD como amostras de tipo selvagem e mutantes foi reportada globalmente e em cada um dos locais. Para todos os ensaios e combinações de amostras, pelo menos 79 de 80 réplicas apresentaram a determinação de mutação correta (Tabela 21).

		Determinações corretas do ensaio de mutação					
Amostra	12ALA	12ARG	12ASP	12CYS	12SER	12VAL	13ASP
Mutante 3 x LOD	79/80	80/80	80/80	79/80	80/80	80/80	80/80
Tipo selvagem (baixo)	80/80	79/80	80/80	80/80	79/80	79/80	80/80

Tabela 21. Determinações corretas globalmente

NSCLC

Para cada uma das 7 mutações KRAS de NSCLC, foram utilizadas 3 amostras representantes de cada um dos 3 tipos de métodos de colheita (ressecção, CNB e FNA). Foram utilizadas 6 amostras clínicas de tipo selvagem adicionais (2 amostras representando cada um dos 3 tipos de métodos de colheita de amostras) para criar pools de diluente de ADN de tipo selvagem.

Os extratos múltiplos foram reunidos em pool para cada uma das amostras de mutação para criar uma única pool de amostra por mutação. Cada pool de amostra de mutação foi diluída para gerar amostras de teste a níveis de mutação de 1 x LOD e 3 x LOD.

Os laboratórios utilizados neste estudo localizavam-se em 3 locais diferentes. As condições laboratoriais eram variadas em cada local, pela utilização de 2 instrumentos Rotor-Gene Q MDx 5plex HRM, 2 operadores, 2 lotes do *therascreen* KRAS RGQ PCR Kit e 2 execuções por dia (por operador) ao longo de 16 dias não consecutivos.

Para todos os ensaios e combinações de amostras, pelo menos 284 de 288 réplicas apresentaram a determinação de mutação correta. A proporção global de determinações corretas, juntando todos os ensaios, para o grupo 1 x LOD foi de 100%. A proporção global de determinações corretas, juntando todos os ensaios, para o grupo 3 x LOD foi de 99,6%. A proporção global de determinações corretas para as amostras (tipo selvagem) sem mutação detetada foi de 100% (Tabela 22).

Nível de mutação	Ensaio	Determinações corretas	Determinações corretas, %	IC de 90% bilateral inferior
	12ALA	288/288	100	98,97
1 × LOD	12ARG	288/288	100	98,97
	12ASP	288/288	100	98,97
	12CYS	284/284	100	96,85
	12SER	284/284	100	96,85
	12VAL	288/288	100	98,97
	13ASP	288/288	100	98,97
	12ALA	288/288	100	98,97
	12ARG	288/288	100	98,97
	12ASP	288/288	100	98,97
3 × LOD	12CYS	284/288	98,61	96,85
	12SER	284/288	98,61	96,85
	12VAL	288/288	100	98,97
	13ASP	287/287	100	98,96
Tipo selvagem		285/285	100	98,95

Tabela 22. Determinações corretas para 1 x LOD, 3 x LOD e tipo selvagem

Variação de manipulação de amostras

O objetivo deste estudo era avaliar o efeito de variação de manipulação de amostras, especificamente extração ADN, no *therascreen* KRAS RGQ PCR Kit. Este estudo complementa o estudo de repetibilidade e reprodutibilidade, analisando a variação de manipulação de amostras quando as mesmas secções FFPE clínicas e secções FFPE de linhas celulares foram processadas em 3 locais, seguidos de testes com o therascreen KRAS RGQ PCR Kit.

CRC

Foram cortadas 30 secções sequenciais de 5 µm de cada uma de 10 amostras FFPE de CRC (3 de tipo selvagem e 1 por mutação). As secções foram distribuídas aleatoriamente pelos 3 locais de testes, de modo que cada local recebeu 10 secções por amostra FFPE (um total de 100 secções). Das 300 extrações de ADN testadas, 298 amostras foram válidas. Observou-se uma concordância de 99,33% entre os 3 locais relativamente a determinações de mutação KRAS.

Uma comparação por local dos valores médios de ΔC_T de amostras mutantes e de tipo selvagem, mostrou uma concordância muito aproximada dos resultados. Os resultados demonstram a concordância do procedimento de extração de ADN e o processamento de amostras em conjunto com o *therascreen* KRAS RGQ PCR Kit.

NSCLC

Neste estudo, foram utilizadas 13 amostras de NSCLC clínicas (3 x 12ASP, 3 x 12CYS, 4 x 12VAL e 3 tipo selvagem) e 4 amostras de linhas celulares FFPE (12ALA, 12ARG, 12SER e 13ASP). As amostras representaram os diferentes métodos de colheita: ressecção cirúrgica, FNA ou CNB. Foram usadas linhas celulares para representar mutações raras sempre que não estava disponível tecido NSCLC.

Os 3 lotes de 20 secções FFPE foram aleatoriamente distribuídos pelos 3 locais. Em cada um dos 3 locais, a extração de ADN for realizada num lote de 20 secções FFPE (10 pares) por mutação e tipo selvagem.

Quando todas as preparações de amostra em 3 locais de teste individuais foram testadas com o *therascreen* KRAS RGQ PCR Kit, cada uma das 7 mutações e amostras de tipo selvagem foi identificada com a determinação de mutação correta. A determinação global por cada uma das 7 amostras de mutação e tipo selvagem foi de 100%, demonstrando consistência entre locais para extração de ADN e deteção de mutação com o *therascreen* KRAS RGQ PCR Kit.

Equivalência de métodos de colheita de amostras (apenas NSCLC)

O objetivo deste estudo era o de avaliar se a determinação de mutação para amostras NSCLC determinada pelo *therascreen* KRAS RGQ PCR Kit foi afetada pelo método de colheita de amostra. Os 3 métodos de colheita de amostra avaliados neste estudo foram a ressecção, FNA e CNB.

Para este estudo, as amostras CNB e FNA "de paciente correspondente" foram retiradas de amostras de tumor resseccionadas cirurgicamente para permitir que o mesmo tumor seja colhido pelos 3 métodos de colheita. Neste estudo, estavam disponíveis amostras de 169 ressecções, 169 CNB e 169 FNA.

Cada amostra foi extraída e testada com ensaio de controlo KRAS. Cada amostra que gera um resultado válido (169 ressecções, 169 CNB e 164 FNA) foi testada com todos os 8 ensaios KRAS.

Além disso, para cada uma das amostras FFPE de NSCLC clínicas, o ADN extraído utilizado para a análise do *therascreen* KRAS RGQ PCR Kit foi também avaliado pela sequenciação Sanger bidirecional para determinar o nível de concordância entre o *therascreen* KRAS RGQ PCR Kit e a sequenciação Sanger bidirecional. Em todos os tipos de amostras, o *therascreen* KRAS RGQ PCR Kit determina com precisão estado de mutação versus sequenciação Sanger bidirecional com uma taxa de concordância percentual global de 96,96%.

Os resultados deste estudo demonstram que o *therascreen* KRAS RGQ PCR Kit oferece resultados equivalentes nos 3 métodos de colheita estudados, conforme indicado pela percentagem das taxas de concordância global de pares:

- CNB vs. FNA 97,52 (limites de confiança 94,41–99,15)
- CNB vs. ressecção 96,39 (limites de confiança 92,99–98,41)
- FNA vs. ressecção 98,76 (limites de confiança 96,14–99,78)

Referências

Referências citadas

- 1. Hilger, R.A., et al. (2002) The Ras-Raf-MEK-ERK pathway in the treatment of cancer. Onkologie 25, 511.
- 2. Bachireddy, P., et al. (2005) Getting at MYC through RAS. Clin. Cancer Res. 11, 4278.
- Han, S.-W. et al. (2006) Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and AKT phosphorylation. Clin. Cancer Res. 12, 2538.
- 4. Pao, W. et al. (2005) KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PloS Medicine 2, 57.
- 5. Newton, C.R. et al. (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17, 2503.
- 6. Whitcombe, D. et al. (1999) Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotech. 17, 804.
- 7. Catalog of Somatic Mutations in Cancer: www.sanger.ac.uk/genetics/CGP/cosmic.
- 8. Clinical and Laboratory Standards Institute (CLSI) (2004). Protocols for Determination of Limits of Detection and Limits of Quantitation: Approved Guideline. CLSI Document EP17-A. Wayne, PA: Clinical and Laboratory Standards Institute (formerly NCCLS).

Referências úteis

Amado, R.G. (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. **26**, 1626.

Benvenuti, S. et al. (2007) Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. **67**, 2643.

Bokemeyer, C. et al., (2008) K-RAS status and efficacy of first-line treatment of patients with metastatic colorectal cancer (mCRC) with FOLFOX with or without cetuximab: The OPUS experience. J. Clin. Oncol. **26** (May 20 suppl; abstr 4000).

Chaft, J.E. et al. (2013) Phase II trial of neoadjuvant bevacizumab plus chemotherapy and adjuvant bevacizumab in patients with resectable nonsquamous non-small-cell lung cancers. J. Thorac. Oncol. **8**, 1084.

Clinical and Laboratory Standards Institute (CLSI) (2008). User Protocol for Evaluation of Qualitative Test Performance: Approved Guideline, 2nd ed. CLSI Document EP12-A2. Wayne, PA: Clinical and Laboratory Standards Institute (formerly NCCLS).

Clinical and Laboratory Standards Institute (CLSI) (2004). *Evaluation of Precision Performance of Quantitative Measurement Methods: Approved Guideline,* 2nd ed. CLSI Document EP05-A2. Wayne, PA: Clinical and Laboratory Standards Institute (formerly NCCLS).

De Roock, W. et al. (2007) KRAS mutations preclude tumor shrinkage of colorectal cancers treated with cetuximab. J. Clin. Oncol. **25**, 4132.

De Roock, W. et al. (2008) KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab. Ann. Oncol. 19, 508.

Di Fiore, F. et al. (2007) Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy. Br. J. Cancer **96**, 1166.

Dingemans, A.M. et al. (2013) A phase II study of sorafenib in patients with platinumpretreated, advanced (Stage IIIb or IV) non-small cell lung cancer with a KRAS mutation. Clin. Cancer Res. **3**, 743.

Finocchiaro, G. et al. (2007) EGFR, HER2, and Kras as predictive factors for cetuximab sensitivity in colorectal cancer. J. Clin. Oncol. **25**, 4021.

Jänne, P.A. et al. (2013) Selumetinib plus docetaxel for KRAS-mutant advanced non-smallcell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 1, 38.

Karapetis C. et al. (2008) KRAS mutation status is a predictive biomarker for cetuximab benefit in the treatment of advanced colorectal cancer. Results from NCIC CTG CO.17: A phase III trial of cetuximab versus best supportive care. 10th World Congress on Gastrointestinal Cancer: Abstract o-037. Presented June 27, 2008.

Khambata-Ford, S. et al. (2007) Expression of Epiregulin and Amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. **25**, 3230.

Lièvre A. et al. (2008) KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. **26**, 374.

Lievre, A. et al. (2006) KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. **66**, 3992.

Reckamp, K.L. et al. (2014) A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan-HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non-small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer. 120, 1145.

Tejpar, S. et al. (2008) Relationship of efficacy with K-RAS status (wild type versus mutant) in patients with irinotecan-refractory metastatic colorectal cancer (mCRC), treated with irinotecan (q2w) and escalating doses of cetuximab (q1w): The EVEREST experience (preliminary data). J. Clin. Oncol. **26**, (May 20 suppl; abstr 4001).

Thelwell, N. et al. (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res. **28**, 3752.

Van Cutsem, E. et al. (2008) K-RAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience. J Clin Oncol. **26**, (May 20 suppl; abstr 2).

Símbolos

Os seguintes símbolos poderão aparecer na embalagem e nos rótulos:

∑ <n></n>	Contém reagentes suficientes para <n> reações</n>
\sum	Prazo de validade
IVD	Dispositivo médico de diagnóstico in vitro
REF	Número de catálogo
LOT	Número de lote
MAT	Número do material
CONT	Conteúdo
NUM	Número
Rn	R refere-se à revisão do manual e n ao número da revisão
	Limites de temperatura
	Fabricante
	Consultar as instruções de utilização
	Cuidado

Informações de contacto

Para obter assistência técnica e mais informações, consulte o nosso Centro de Suporte Técnico em **www.qiagen.com/Support**, ligue para 00800-22-44-6000 ou contacte um dos Departamentos da Assistência Técnica ou distribuidores locais da QIAGEN (consulte o verso do manual ou visite-nos em www.qiagen.com).

Apêndice 1: Protocolo manual do *therascreen* KRAS RGQ PCR Kit

Esta secção contém instruções para utilização do *therascreen* KRAS RGQ PCR Kit com o software RGQ, versão 2.3, no modo aberto (ou seja, sem utilizar o KRAS Assay Package).

Informações gerais

- Para obter informações sobre os materiais necessários, consulte Materiais necessários, mas não fornecidos.
- Para obter instruções completas sobre a preparação de amostras e a disposição de amostras, consulte as secções Protocolo: avaliação de amostras de ADN e Protocolo: deteção de mutações KRAS.

Protocolo: criação de um perfil de temperatura

Antes de começar, crie um perfil de temperatura para as análises KRAS. Os parâmetros de ciclagem são os mesmos para a avaliação da amostra e para a avaliação de mutação.

Procedimento

Os parâmetros de ciclagem são apresentados na Tabela 23.

Tabela 23. Parâmetros de ciclagem

1 95 °C 15 minutos Nenhuma	
95 °C 30 segundos Nenhuma	
60°C 60 segundos Green e Yellow	

- Clique duas vezes no ícone do software da série Rotor-Gene Q, versão 2.3, no ambiente de trabalho do computador portátil ligado ao instrumento Rotor-Gene Q MDx 5plex HRM. Selecione o separador "Advanced" (Avançadas) na caixa de diálogo "New Run" (Nova execução) que é apresentada.
- Para criar um novo modelo, selecione Empty Run (Execução vazia) e, em seguida, clique em New (Novo) para aceder ao New Run Wizard (Assistente de nova execução).
- Selecione o "72-Well Rotor" (Rotor de 72 poços) como modelo de rotor. Confirme que o anel de aperto está anexado e marque a caixa Locking Ring Attached (Anel de aperto anexado). Clique em Next (Seguinte) (Figura 21).

Figura 21. A caixa de diálogo "New Run Wizard" (Assistente de nova execução). 1 = "Rotor type" (Tipo de rotor); 2 = caixa "Locking Ring Attached" (Anel de aperto anexado); 3 = "Next" (Seguinte). Introduza o nome do operador. Adicione as notas que desejar e introduza 25 em "Reaction Volume" (Volume de reação). Certifique-se de que o campo Sample Layout (Disposição de amostras) contém o valor 1, 2, 3.... Clique em Next (Seguinte) (Figura 22).

	New Run Wizar	d 🛛 🔀	
_	This screen display clicking Next wher	a way are ready to move to the next page.	
1-	Notes :	INAME your mouse over the item for help. You can also click on a combo box to display help about its available settings.	
2-			
3–	Beaction Volume (µL): Sample Lavout :	1.2.3.	
	Skip Wizard	<< Back Next>>	- 4

Figura 22. Introdução do nome do operador e do volume de reação. 1 = campo de diálogo "Operator" (Operador); 2 = campo de diálogo "Notes" (Notas); 3 = campo "Reaction Volume" (Volume de reação); 4 = "Sample Layout" (Disposição de amostras); 5 = "Next" (Seguinte).

 Clique em Edit Profile (Editar perfil) na janela "New Run Wizard" (Assistente de nova execução) (Figura 23) e programe o perfil de temperatura de acordo com as informações nos passos seguintes.

Edit Profil	le				Click this button edit the profile shown in the box above.
Channel Se	etup :			1 (
Name	Source	Detector	Gain	Create New	
Green	470nm	510nm	5	Edit	
Yellow	530nm	555nm	5		
Urange	585nm C25	610nm CCOurse	5	Edit Gain	
Crimson	620nm	550nm 710hp	5	Bemove	
HBM	460nm	510nm	ź		
				Reset Defaults	
Gain Opti	misation	1			
		1			

Figura 23. Edição do perfil.

6. Clique em Insert after (Inserir a seguir) e selecione New Hold at Temperature (Nova temperatura em espera) (Figura 24).

🟴 Edit Profile]
New Open Save As Help		
The run will take approximately 0 second(s) to complete. 1	The graph below represents the run to be performed :	
Click on a cuple below to medify it :		
Click on a cycle below to modily k.	Insett, after	- 1
	Insert B New Melt	
	Rer New Hold at Temperature	+2
	Copy of Current Step	17

Figura 24. Inserção de um passo inicial de incubação. 1 = "Insert after" (Inserir a seguir); 2 = "New Hold at Temperature" (Nova temperatura em espera).

 Defina o valor no campo Hold Temperature (Temperatura em espera) como 95 °C e o campo Hold Time (Tempo em espera) como 15 mins 0 secs (15 min 0 s). Clique em Insert After (Inserir a seguir) e, em seguida, selecione New Cycling (Nova ciclagem) (Figura 25).

Nou Open	Equa Ac Holo		
The run will take app	roximately 16 minute(s) to co	omplete. The graph below represents the run to be performed :	
Pliak on a quala bala	u to modify it :		
Hold	w to modify it .	Insett after.	
		Insert before New Melt	
		New Hold at Temperature	
		Hemove New HRM Step	
Hold Temperature :	95 ºC	Hemove New HRM Step Copy of Current Step	
Hold Temperature : Hold Time :	95 ≌C 15 mins 0 secs	Hemove New HRM Step Copy of Current Step	

Figura 25. Passo inicial de incubação a 95 °C. 1 = "Hold Temperature" (Temperatura em espera) e "Hold Time" (Tempo em espera); 2 = "Insert after" (Inserir a seguir); 3 = "New Cycling" (Nova ciclagem).

 Defina o número de repetições de ciclo como 40. Selecione o primeiro passo e defina 95°C for 30 secs (95 °C durante 30 s) (Figura 26).

New Open Save As H The run will take approximately 98 mi	Help nute(s) to complete. The graph below represents the run to be performed :
lick on a cycle below to modify it : Hold Cycling	Insert after
his cycle repeats 40 time(s). Click on one of the steps below to ma	adify it, or press + or - to add and remove steps for this cycle.
Timed Step 👤	- +
Timed Step	95°C for 30 secs 72°C for 20 secs 60°C for 20 secs
Timed Step	95°C for 30 secs 72°C for 20 secs 60°C for 20 secs

Figura 26. Passo de ciclagem a 95 °C. 1 = caixa "Cycle repeats" (Repetições de ciclo); 2 = passo um: definição da temperatura; 3 = passo um: definição do tempo.

 Coloque em destaque o segundo passo e defina 60 °C durante 60 s. Para ativar a aquisição de dados durante este passo, clique em Not Acquiring (Não adquirir dados) (Figura 27).

Edit Profile	Ve As Help	
The run will take appro		_
Click on a cycle below Hold Cycling This cycle repeats 4	time(s).	
Timed Step 60°C 60 seconds Not Acquiring ☐ Long Range ☐ Touchdown	95°C for 30 secs	Ī
]	<u>о</u> к	

Figura 27. Passo de ciclagem a 60 °C. 1 = passo dois: definição da temperatura e do tempo; 2 = "Not Acquiring" (Não adquirir dados).

 Na lista Available Channels (Canais disponíveis), selecione Green e Yellow e, em seguida, clique em > para os mover para a lista Acquiring Channels (Canais de aquisição). Clique em OK (Figura 28).

Acquisiti	on			
Same as Pi	revious : [(New Acqui	sition)	
Acquisitic Available Name Crimson HRM Drange Red	n Configu Channels	ration : :	Acquiring Channels : Name Green Yellow	-1
To acquir channel, Dye Charl	e from a c select it in	hannel, sele the right-ha	ect it from the list in the left and click >. To stop acquiring from a nd list and click <. To remove all acquisitions, click <<.	- 2
Dye Unar	Source	Detector		
Green	470nm	510nm	FAM [®] SYBB Green 1 [®] Eluorescein, EvaGreen [®] Alexa Eluor 488 [®]	
Yellow	530nm	555nm	JOE [®] , VIC [®] , HEX, TET [®] , CAL Fluor Gold 540 [®] , Yakima Yellow [®]	
Orange	585nm	610nm	R0X ¹ , CAL Fluor Red 610 ¹ , Cy3.5 ¹ , Texas Red ¹ , Alexa Fluor 568 ¹	
Red	625nm	660nm	Cy5 ¹ , Quasar 670 ¹ , Alexa Fluor 633 ¹	
Crimson	680nm	710hp	Quasar705 ¹ , Alexa Fluor 680 ¹⁾	
HBM	460nm	510nm	SYTO 9 ¹ , EvaGreen ¹	

Figura 28. Aquisição de dados no passo de ciclagem de 60 °C.

 Coloque em destaque o terceiro passo e clique em – para eliminar. Clique em OK (Figura 29).

🖉 Edit Profile	
New Open Save As Help	
The run will take approximately 135 minute(s) to complete	e. The graph below represents the run to be performed :
Click on a cycle below to modify it :	
Hold Cycling	Insert after
	Insert before
This surple seconds F (2 Vers(s)	Hemove
Click on one of the steps below to modify it, or press + or	r - to add and remove steps for this cycle.
Timed Step 95 ^e C for 30 sec 72 ^e C 20 seconds Acquiring to Cycling B on Green Long Range Touchdown	25 72°C for 20 secs 60°C for 60 secs 1
]	<u></u> _3

Figura 29. Remoção do passo de extensão.

12. Na nova janela, clique em Gain Optimisation (Otimização de ganho) (Figura 30).

	New Run Temperal	N Wizard ure Profile :					This box displays help on elements in the wizard. For help on an item, hover your mouse over the item for help. You can also click on a combo box to display help about its available settings.
1	Channel : Name Green Yellow Orange Red Crimson HRM	Setup : Source 470nm 530nm 585nm 625nm 680nm 460nm	Detector 510nm 555nm 610nm 660nm 710hp 510nm	Gain 5 5 5 5 7 7 7		 Create New Edit Edit Gain Remove Reset Defaults	
1	Gain Op Skip	otimisation Wizard	<< <u>B</u> ack		<u>N</u> ext >>		

Figura 30. "Gain Optimisation" (Otimização do ganho).

 Clique em Optimise Acquiring (Otimizar aquisição). Aparecem as definições de canal para cada canal. Clique em OK para aceitar estes valores predefinidos. (Figura 31).

	Auto-Gain Optimisation Setup X Optimisation : Auto-Gain Optimisation will read the fluoresence on the inserted sample at different gain levels until it finds one at which the fluorescence levels are acceptable. The range of fluorescence you are looking for depends on the chemistry you are performing.	
2-	Set temperature to ptimise All <u>Optimise Acquiring</u> Perfor Perfor Channel Settings: Channel : Green Tube Position : 1 + Target Sample Range : 5 + Fl up to 10 + Fl. Acceptable Gain Range: 10 + to 10 + OK Cancel Help	- 1
	Start Manual Close Help	

Figura 31. "Auto-gain Optimisation" (Otimização de ganho automático) para o canal verde.

 Marque a caixa Perform Optimisation before 1st Acquisition (Efetuar otimização antes da 1.ª aquisição) e, em seguida, clique em Close (Fechar) para voltar ao assistente (Figura 32).

	on : Auto-Gain Op different gain acceptable. T chemistry you Set temperatu	timisation will rea levels until it find he range of fluor are performing. ure to 60 20 0	d the fluoresence s one at which th escence you are degrees.	on the inser e fluorescen looking for d	ted sample a ce levels are lepends on th	t 1e
Optim Perform	ise All 0 n Optimisation I n Optimisation /	ptimise Acquiring Before 1st Acquis At 60 Degrees At] ition Beginning Of Ru	n		
- Channel S	ettings :					
					•	<u>A</u> dd
Name	Tube Position	Min Reading	Max Reading	Min Gain	Max Gain	<u>E</u> dit
Green	1	5FI	10FI	-10	10	Remove
Tellow	I	JFI	TUFT	-10	10	Remove All

Figura 32. Seleção dos canais verde e amarelo.

15. Clique em Next (Seguinte). Em seguida, clique em Save (Guardar) para guardar o modelo num local apropriado.

Protocolo: avaliação de amostras (manual)

Este protocolo é utilizado para avaliar o ADN amplificável total em amostras e deverá ser executado antes da análise de mutação KRAS.

• Prepare amostras conforme definido em Protocolo: avaliação de amostras de ADN.

- Configure a execução de PCR no instrumento Rotor-Gene Q MDx 5plex HRM, conforme descrito em Protocolo: configuração do *therascreen* KRAS RGQ PCR.
- Depois de concluída a execução, analise os dados de acordo com as instruções na secção Análise de dados de avaliação de amostras.

Protocolo: deteção de mutações KRAS (manual)

Após uma amostra ter sido aprovada na avaliação de amostras, a mesma pode ser testada para detetar mutações KRAS.

- Prepare amostras conforme definido em Protocolo: deteção de mutações KRAS.
- Configure a execução de PCR no Rotor-Gene Q MDx 5plex HRM conforme descrito em Protocolo: configuração do *therascreen* KRAS RGQ PCR.
- Depois de concluída a execução, analise os dados de acordo com as instruções na secção Análise de deteção de mutação KRAS.

Protocolo: configuração do therascreen KRAS RGQ PCR

- 1. Abra o software Rotor-Gene Q 2.3 e abra o perfil de temperatura apropriado criado.
- Crie um perfil de temperatura de acordo com o Protocolo: criação de um perfil de temperatura.

Certifique-se de que está selecionado o rotor correto e selecione a caixa Locking Ring Attached (Anel de bloqueio anexado). Clique em Next (Seguinte) (Figura 33).

Figura 33. A caixa de diálogo e o ecrã de boas-vindas "New Run Wizard" (Assistente de nova execução). 1 = "Rotor type" (Tipo de rotor); 2 = caixa "Locking Ring Attached" (Anel de aperto anexado); 3 = "Next" (Seguinte).

 Introduza o nome do operador. Adicione as notas que desejar e certifique-se de que o campo Reaction Volume (Volume de reação) está definido como 25 e que a caixa do campo Sample Layout (Disposição de amostras) indica 1, 2, 3.... Clique em Next (Seguinte) (Figura 34).

New Run Wize	ard	This box displays	
clicking Next wh	lays miscellaneous options for the run. Complete the fields, en you are ready to move to the next page.	help on elements in the wizard. For help	
Operator : Notes :	NAME	your mouse over the item for help. You can also click on a combo box to display help about its available settings.	- 1
Reaction Volume (μL):	25		2
Sample Layout :	1, 2, 3		
Skip Wizard	<< Back <u>N</u> ext >>		<u> </u>

Figura 34. A caixa de diálogo "New Run Wizard" (Assistente de nova execução). 1 = campos "Operator" (Operador) e "Notes" (Notas); 2 = campos "Reaction Volume" (Volume de reação) e "Sample Layout" (Disposição de amostras); 3 = "Next" (Seguinte).

 Mantenha todos os valores conforme são apresentados na próxima janela. Não é necessária qualquer edição, uma vez que o perfil de temperatura foi criado de acordo com as instruções em Protocolo: criação de um perfil de temperatura. Clique em Next (Seguinte) (Figura 35).

New Run	Wizard						X
Temperatu	re Profile :	This box displays					
Edit Profile							
Name	Source	Detector	Gain	1		Create New	
Green	470nm	510nm	5				
Yellow	530nm	555nm	5			Edit	
Orange	585nm	610nm	5			Edit Gain	
Red	625nm	660nm	5				
Crimson	680nm	710hp	7			Hemove	
нвм	460nm	510nm	<i>(</i>			Reset Defaults	
Gain Optimisation							
Skip Wizard << Back Next >>							

Figura 35. A caixa de diálogo "New Run Wizard" (Assistente de nova execução) e ecrã de edição da temperatura. 1 = "Next" (Seguinte).

5. Analise o resumo e clique em Start Run (Iniciar execução) para guardar o ficheiro de execução e iniciar a execução (Figura 36).

Figura 36. A caixa de diálogo "New Run Wizard" (Assistente de nova execução). 1 = "Start Run" (Iniciar execução).

Nota: Após o início da execução, é apresentada uma nova janela na qual pode introduzir os nomes das amostras ou clicar em Finish (Concluir) e introduzir os nomes mais tarde, selecionando o botão Sample (Amostra) durante a execução ou quando a execução estiver concluída.

Se clicar em Finish and Lock Samples (Concluir e bloquear amostras), já não poderá editar os nomes das amostras. O utilizador deverá ter um cuidado especial ao introduzir os nomes das amostras, para assegurar testes e análises corretos.

Nota: Quando estiver a introduzir nomes de amostras, os poços vazios devem ficar em branco na coluna "Name" (Nome).

- Depois de concluída a execução, analise os dados de acordo com as secções Análise de dados de avaliação de amostras ou Análise de deteção de mutação KRAS, conforme adequado.
- 7. Se forem necessários relatórios de quantificação, clique no ícone Reports (Relatórios) da barra de ferramentas no ficheiro de execução do Rotor-Gene Q.

Interpretação de resultados (Manual)

Depois de concluída a execução de avaliação de amostras ou a execução de análise de mutações, analise os dados de acordo com o seguinte procedimento.

Definições de análise do software

- 1. Abra o ficheiro adequado, utilizando o software da série Rotor-Gene Q, versão 2.3.
- Se ainda não tiver atribuído nomes às amostras antes da execução, clique em Edit samples (Editar amostras).
- 3. Introduza os nomes das amostras na coluna Name (Nome).
- 4. Clique em Analysis (Análise). Na página de análise, clique em Cycling A. Yellow para visualizar o canal HEX.
- 5. Clique em Named On (Denominado em).

Nota: Isto garante que os poços vazios não fazem parte da análise.

- 6. Selecione Dynamic Tube (Tubo dinâmico).
- 7. Selecione Linear Scale (Escala linear).
- Clique em Outlier Removal (Remoção de valor atípico) e introduza 10% no campo NTC Threshold (Limiar NTC).
- 9. Defina o limiar como 0.05 (0,05) e verifique os valores de CT de HEX.
- 10. Na página de análise, clique em Cycling A. Green para visualizar o canal FAM.
- Certifique-se de que Dynamic Tube (Tubo dinâmico) está destacado. Clique em Linear Scale (Escala linear).
- Clique em Outlier Removal (Remoção de valor atípico) e introduza 10% no campo NTC Threshold (Limiar NTC).
- 13. Defina o limiar como 0.05 (0,05) e verifique os valores de CT de FAM.

Análise de dados de avaliação de amostras

Executar análise de controlo

Consulte o fluxograma "Executar análise de controlo" na Figura 37.

- Controlo negativo: para garantir que não existe contaminação da mistura de reação, o controlo sem modelo (No Template Control, NTC) não deve gerar um valor de C_T inferior a 40 no canal verde. Para se assegurar de que a placa foi configurada corretamente, o NTC deve apresentar uma amplificação entre 31,91 e 35,16 no canal amarelo. Os valores especificados estão dentro e incluem esses valores.
- Controlo positivo: o controlo positivo (Positive Control, PC) KRAS deverá apresentar um valor de C_T entre 23,5 e 29,5 no canal verde em cada um dos 8 ensaios. Os valores especificados estão dentro e incluem esses valores. Um valor fora deste intervalo indica um problema na configuração do ensaio e por conseguinte uma falha na execução.

Nota: Os dados de amostra não deverão ser utilizados se qualquer um destes dois controlos de execução falhar.

Desde que ambos os controlos de execução sejam válidos, o valor de C_T de cada amostra deverá encontrar-se dentro do intervalo de 21,92 a 32,00 no canal verde. Se a amostra estiver fora deste intervalo, é fornecido o seguinte guia.

Análise de amostra – ensaio de controlo

• CT do ensaio de controlo de amostras < 21,92: as amostras com um CT de controlo < 21,92 devem ser diluídas pois isto representa o lado inferior do intervalo de ensaio validado. Para detetar cada mutação a um nível baixo, as amostras sobreconcentradas devem ser diluídas para ficarem dentro do intervalo indicado acima, utilizando o princípio de que diluir para metade aumentará o CT em 1. Se a amostra estiver perto de 21,92, recomenda-se a diluição para garantir a obtenção de um resultado da execução do teste da amostra (deteção de mutação KRAS). As amostras deverão ser diluídas utilizando a água fornecida no kit (água isenta de nuclease para diluição [Dil.]).</p>

 C_T do ensaio de controlo de amostras > 32: recomenda-se uma nova extração da amostra uma vez que insuficiente modelo de ADN inicial estará presente para detetar todas as mutações aos valores de cut-off indicados para o ensaio.

Análise de deteção de mutação KRAS

Executar análise de controlo

Consulte o fluxograma "Executar análise de controlo" (Figura 37).

- Controlo negativo: para garantir que não existe contaminação da mistura de reação, o controlo sem modelo (No Template Control, NTC) não deve gerar um valor de C_T inferior a 40 no canal verde. Para se assegurar de que a placa foi configurada corretamente, o NTC deve apresentar uma amplificação entre 31,91 e 35,16 no canal amarelo. Os valores especificados estão dentro e incluem esses valores.
- Controlo positivo: o controlo positivo (Positive Control, PC) KRAS deverá apresentar um valor de C_T entre 23,5 e 29,5 no canal verde em cada um dos 8 ensaios. Os valores especificados estão dentro e incluem esses valores. Um valor fora deste intervalo indica um problema na configuração do ensaio e por conseguinte uma falha na execução.

Nota: Os dados de amostra não deverão ser utilizados se um destes 2 controlos de execução falhar.

Figura 37. Diagrama de Execução de análise de controlo.

Análise de amostras

Consulte o fluxograma "Análise de amostras" na Figura 38.

Valor de CT de FAM de controlo da amostra

Desde que ambos os controlos de execução sejam válidos para o ensaio de controlo, o valor C_T de cada amostra deverá encontrar-se dentro do intervalo de 21,92 a 32,00 no canal verde.

Se a amostra estiver fora deste intervalo, é fornecido o seguinte guia.

- C_T do ensaio de controlo de amostras < 21,92: as amostras com um C_T de controlo < 21,92 irão sobrecarregar os ensaios de mutação e devem ser diluídas. Para detetar cada mutação a um nível baixo, as amostras sobreconcentradas devem ser diluídas para ficarem dentro do intervalo indicado acima, utilizando o princípio de que diluir para metade aumentará o C_T em 1. As amostras deverão ser diluídas utilizando a água fornecida no kit (água isenta de nuclease para diluição [Dil.]).
- C_T do ensaio de controlo de amostras > 32: interprete com cuidado, uma vez que mutações de nível muito baixo poderão não ser detetadas.

Figura 38. Diagrama de Análise da amostra.

Valor de CT de HEX de ensaios de mutação de controlo interno da amostra

Consulte o fluxograma "Análise de amostras" na Figura 38.

Devem ser analisados todos os poços de cada amostra. Certifique-se de que cada poço gera um sinal HEX do controlo interno. Existem 3 possibilidades:

- Se o C_T do controlo interno ficar dentro do intervalo especificado (31,91 a 35,16), é observada amplificação HEX positiva.
- Se o C_T do controlo interno ficar acima do intervalo especificado (> 35,16), é observada amplificação HEX negativa.
- Se o C⊺ do controlo interno ficar abaixo do intervalo especificado (< 31,91), é inválido.

Se a falha do controlo interno for devida a inibição da PCR, diluir a amostra pode reduzir o efeito dos inibidores, mas é necessário ter em atenção que a diluição também dilui o ADN alvo. Está incluído no Kit um tubo de "Água para Diluição de Amostra" (Dil.).

Valor de CT de FAM de ensaios de mutação de amostra

Os valores FAM de todas as 7 misturas de reação deverão ser comparados aos valores apresentados na Tabela 24.

Ensaio	Intervalo de C _T aceitável	Intervalo ∆C₁
12ALA	0,00-40,00	≤ 8,00
12ASP	0,00-40,00	≤ 6,60
12ARG	0,00-40,00	≤ 8,00
12CYS	0,00-40,00	≤ 8,00
12SER	0,00-40,00	≤ 8,00
12VAL	0,00-40,00	≤ 7,50
13ASP	0,00-40,00	≤ 7,50

Tabela 24. Valores aceitáveis de reação de mutação de amostra (FAM)*

* Os valores aceitáveis estão dentro e incluem os valores apresentados.

- Se o C_T de FAM ficar dentro do intervalo especificado, é observada amplificação FAM positiva.
- Se o C_T de FAM ficar acima do intervalo especificado ou não ocorrer amplificação, é observada amplificação FAM negativa.

Calcule conforme se segue o valor ΔC_T de cada tubo de mutação que apresente amplificação FAM positiva, certificando-se de que os valores C_T de mutação e de controlo são da mesma amostra.

 $\Delta C_T = C_T de mutação - C_T de controlo$

Compare o valor de ΔC_T da amostra com o ponto de cut-off do ensaio em questão (Tabela 24), certificando-se de que o ponto de cut-off correto é aplicado a cada ensaio.

O ponto de cut-off é o ponto acima do qual poderá potencialmente existir um sinal positivo devido ao sinal de fundo do iniciador ARMS no ADN de tipo selvagem. Se o valor ΔC_T da amostra for superior ao ponto de cut-off, é classificado como negativo ou para além dos limites de deteção do Kit.

Para cada amostra, será atribuído a cada reação de mutação um estado de "mutação detetada", "mutação não detetada" ou "inválido", utilizando os seguintes critérios:

Mutação detetada:

 A amplificação FAM positiva e o ΔC_T estão dentro ou abaixo do valor de cut-off. Se forem detetadas várias mutações, a mutação reportada deverá ser a que tiver o valor ΔC_T mais pequeno.

Mutação não detetada:

- A amplificação FAM positiva e o ∆C⊺ são superiores ao valor de cut-off.
- Amplificação FAM negativa e amplificação HEX (controlo interno) positiva. Inválido:
- O HEX (controlo interno) é inválido.
- Amplificação FAM negativa e amplificação HEX negativa.

Se uma amostra apresentar amplificação HEX negativa num tubo, mas amplificação FAM positiva num tubo diferente, significa que um resultado de "mutação detetada" poderá ainda ser considerado válido, mas a mutação específica identificada poderá não estar atribuída de forma credível.

- Se uma amostra apresentar amplificação HEX negativa e amplificação FAM positiva no mesmo tubo, o resultado de "mutação detetada" deverá ser considerado válido.
- Se um tubo for inválido para o HEX (controlo interno), o resultado desse tubo não deverá ser utilizado.

Atribuição de estado de mutação da amostra

Uma vez avaliados todos os tubos de reação de mutação, o estado de mutação da amostra é determinado conforme se segue:

- Mutação detetada: uma ou mais das 7 reações de mutação é positiva. Se forem detetadas várias mutações, a mutação reportada deverá ser a que tiver o valor ΔC⊺ mais pequeno.
- Mutação não detetada: todas as 7 reações de mutação são negativas.
- Inválido: nenhuma reação de mutação é positiva e uma ou mais reações de mutação é inválida.

Nota: O *therascreen* KRAS RGQ PCR Kit destina-se a detetar mutações no gene KRAS de uma amostra de ADN. Quando uma amostra tiver um resultado de "mutação KRAS detetada", apenas deverá ser reportada uma mutação específica. Se forem detetadas várias mutações, a mutação reportada deverá ser a que tiver o valor ∆C_T mais pequeno.

Poderá ocorrer alguma reatividade cruzada entre as reações de mutação. Por exemplo, se for observado um nível elevado de mutação 12ALA, algumas das outras reações de mutação também poderão apresentar resultados positivos. Isto deve-se ao facto de os iniciadores ARMS detetarem outras mutações de sequências semelhantes entre si. Caso um segundo ensaio de mutação produza um resultado positivo, é provável que se trate de reatividade cruzada. Já se têm observado mutantes duplos, embora raramente.
Se uma ou mais das reações de mutação for inválida mas uma ou mais for positiva, a amostra pode ainda ter um resultado de mutação KRAS detetada, uma vez que está presente uma mutação. No entanto, a mutação específica reportada poderá não ser exata e poderá resultar de reatividade cruzada. Por conseguinte, a amostra deverá apenas ser determinada como mutação KRAS detetada.

Anexo 2: Instalação do therascreen KRAS Assay Package

O *therascreen* KRAS RGQ PCR Kit foi concebido para ser utilizado com o Rotor-Gene Q MDx 5plex HRM com um rotor de 72 poços. O *therascreen* KRAS Assay Package está disponível em separado num CD (n.º de cat. 9022641).

O *therascreen* KRAS Assay Package está disponível para transferência, na página Web do produto correspondente do *therascreen* KRAS RGQ PCR Kit, em www.qiagen.com. A informação para transferência encontra-se na secção "Product Resources" (Recursos do produto) no separador "Supplementary Protocols" (Protocolos suplementares). Os Assay Packages também podem ser encomendados num CD.

O pacote inclui o "*therascreen* KRAS CE QC Locked Template" e o "*therascreen* KRAS CE Locked Template".

Nota: O *therascreen* KRAS Assay Package, versão 3.1.1 (QIAGEN, n.º de cat. 9023675), apenas funciona com o software Rotor-Gene Q, versão 2.3, correspondente. Antes de proceder à instalação do *therascreen* KRAS Assay Package, certifique-se de que está instalada a versão correta do software Rotor-Gene Q.

Procedimento (download)

- 1. Transfira o *therascreen* KRAS Assay Package a partir da página Web do produto correspondente do *therascreen* KRAS RGQ PCR Kit em www.qiagen.com.
- 2. Abra o ficheiro zip transferido, fazendo duplo clique no ficheiro e extraindo o ficheiro de dentro do arquivo.
- 3. Clique duas vezes em therascreen_KRAS_Assay_Package_3.1.1.exe para iniciar a instalação.

Procedimento (CD)

- Encomende o therascreen KRAS RGQ Assay Package CE CD compatível com o software Rotor-Gene Q instalado (ver acima), disponível em separado da QIAGEN. Versão 3.1.1. N.º de cat. 9023675.
- Insira o CD na unidade de CD do computador portátil ligado ao instrumento Rotor-Gene Q MDx 5plex HRM.
- Clique duas vezes em therascreen_KRAS_Assay_Package_3.1.1.exe ou therascreen_KRAS_Assay_Package_1.0.12.exe para iniciar a instalação Aparece o assistente de instalação.
- 4. Clique em Next (Seguinte) para continuar (Figura 39).

Figura 39. A caixa de diálogo "Setup" (Instalação). 1 = "Next" (Seguinte).

 Leia o Contrato de licença na caixa de diálogo "License Agreement" (Contrato de licença) e selecione a caixa I accept the agreement (Aceito o contrato). Clique em Next (Seguinte) para continuar (Figura 40).

Please read the following important info	mation before continuing.	Ð
Please read the following License Agre agreement before continuing with the in	ement. You must accept the terms stallation.	of this
Licence Agreement		-
 In the following "Qiagen" refers to Q "Software" means the programs and d ROM) or over the Internet with these of this agreement or have any questions to support@qiagen.com.) The Software a been developed entirely at private exp "commercial computer software". 	lagen GmbH and its affiliated com sta supplied on this physical media onditions. (If you are unsure of any hey should be emailed to ind any accompanying document ense. They are delivered and licer	panies and m (eg. CD- y aspect of ation have rsed as
2. Licence		
accept the agreement.		

Figura 40. A caixa de diálogo "License Agreement" (Contrato de Licença). 1 = Declaração "I accept the agreement" (Aceito o contrato); 2 = "Next" (Seguinte).

A configuração do modelo será iniciada automaticamente.

6. Na janela Setup (Configuração) final, clique em Finish (Concluir) para sair do assistente de configuração. (Figura 41).

Figura 41. Conclusão do assistente.

7. Reinicie o computador. Serão gerados automaticamente atalhos para o "therascreen KRAS QC Locked Template" (Modelo bloqueado do therascreen KRAS QC) e para o "therascreen KRAS Locked Template" (Modelo bloqueado do therascreen KRAS), que são agora apresentados no ambiente de trabalho.

Informações para encomendas

Produto	Índice	N.° de cat.
therascreen KRAS RGQ PCR Kit (24)	Para 24 reações: 1 ensaio de controlo, 7 ensaios de mutação, controlo positivo, água, polimerase <i>Taq</i> de ADN	874011
therascreen KRAS Assay Package CD (version 3.1.1)	Pacote de software de protocolo para utilização com o <i>therascreen</i> KRAS RGQ PCR Kit e o instrumento QIAGEN Rotor-Gene Q MDx 5plex HRM com um rotor de 72 poços	9023675
Rotor-Gene Q e acessórios		
Rotor-Gene Q MDx 5plex HRM	Ciclador real-time PCR e analisador de fusão de alta resolução com 5 canais (verde, amarelo, laranja, vermelho, carmesim) mais canal HRM, computador portátil, software, acessórios, 1 ano de garantia em peças e mão de obra; instalação e formação não incluídas	9002032
Rotor-Gene Q MDx	Ciclador real-time PCR e analisador de fusão de alta resolução com 5 canais (verde, amarelo, laranja, vermelho, carmesim) mais canal HRM, computador portátil, software, acessórios, 1 ano de garantia em peças e mão de obra; instalação e formação incluídas	9002033
Loading Block 72 x 0.1 ml Tubes	Bloco de alumínio para a preparação manual da reação com uma pipeta de canal único em 72 tubos de 0,1 ml	9018901

Strip Tubes and Caps, 0.1 ml (250)	250 tiras de 4 tubos e tampas para 1000 reações	981103
Strip Tubes and Caps, 0.1 ml (2500)	10 x 250 tiras de 4 tubos e tampas para 10 000 reações	981106
QIAamp DNA FFPE Tissue Kit – r extraído de tecidos conservados	para a purificação do ADN genómico em parafina	
QIAamp DNA FFPE Tissue Kit (50)	Para 50 preparações de ADN: colunas QIAamp MinElute®, proteinase K, tampões e Collection Tubes (2 ml)	56404

Para obter informações de licenciamento atualizadas e isenções de responsabilidade específicas do produto, consulte o respetivo manual do utilizador ou o manual do kit QIAGEN. Os manuais do utilizador e os manuais do kit QIAGEN estão disponíveis em www.qiagen.com ou podem ser solicitados à Assistência técnica ou ao distribuidor local da QIAGEN.

Histórico de revisões do documento

Data	Alterações
R4, janeiro de 2019	Adição do representante autorizado (capa)
	Atualização da secção Símbolos
	Atualização do modelo
R5, novembro de 2019	Alteração do fabricante legal (página de rosto)
	Remoção do símbolo EC + REP da página de rosto e da secção Símbolos
	Adaptação do nome do instrumento Rotor-Gene Q MDx para Rotor- Gene Q MDx 5plex HRM para concordar com o nome na etiqueta do instrumento
	Atualização do Protocolo para a deteção de mutações de KRAS para incluir um passo adicional na preparação das misturas principais
	Correção dos valores nas colunas Frequência e Intervalo de confiança de 95% na Tabela 9.
	Atualização da percentagem de concordância global de CRC de 96,4% para 96,82%
	Correção dos valores na coluna LOD C95 na Tabela 14

Esta página foi intencionalmente deixada em branco

Esta página foi intencionalmente deixada em branco

Acordo de licenciamento limitado para o therascreen KRAS RGQ PCR Kit

A utilização deste produto implica a aceitação dos seguintes termos por parte de qualquer comprador ou utilizador do produto:

- 1. O produto deverá ser usado unicamente em conformidade com os protocolos formecidos com o produto e com o presente manual e recorrendo à utilização exclusiva de componentes contidos no kit. Nos termos dos direitos de propriedade intelectual, a QIAGEN não conceden enhuma licença para utilizar ou induir os componentes englobados neste kit com qualquer componente não incluído neste kit, solvo conforme descrito nos protocolos fornecidos com o produto, no presente manual e em quaisquer protocolos adicionais disponíveis em www.qiagen.com. Alguns dos referidos protocolos adicionais foram fornecidos por utilizadores QIAGEN para utilizadores QIAGEN. Os referidos protocolos não infimiçame os direitos de terceiros.
- À exceção de licenças expressamente declaradas, a QIAGEN não fornece qualquer garantia de que este kit e/ou a sua utilização ou utilização s não infrinjam os direitos de terceiros.
- 3. Este kit e respetivos componentes estão licenciados para uma única utilização e não podem ser reutilizados, recondicionados ou objeto de revenda.
- 4. A QIAGEN recusa especificamente qualquer outra licença, expressa ou implícita, à exceção das expressamente declaradas.
- 5. O comprador e o utilizador do kit concordam em não tomar nem permitir que terceiros tomem medidas que possam conduzir a ou facilitar qualquer dos atos acima proibidos. A QIAGEN pode fazer cumprir as proibições do presente Contrato de licença limitada em qualquer tribunal e de investigação em que incorra, incluindo honorários de advogados, em quelquer processo destinado a fazer cumprir o presente Contrato de licença limitada ou qualquer um dos seus direitos de propriedade intelectual relativos ao kit e/ou aos seus componentes.

Para obter os termos de licença atualizados, consulte www.qiagen.com.

Marcas comerciais: QIAGEN®, Sample to Insight®, QIAamp®, MinElute®, Rotor-Gene®, Scorpions®, therascreen® (QIAGEN Group); ARMS® (AstraZeneca Ltd.); FAM™, HEX™ (Thermo Fisher Scientific, Inc.).

Os nomes registados, as marcas comerciais etc. utilizados neste documento, mesmo quando não assinalados especificamente como tal, não devem ser considerados como não protegidos por lei.

Não utilizar com amostras de fezes.

Não utilizar com amostras de urina.

Não utilizar com ácido nucleico extra-celular de amostra de sangue.

Não utilizar com amostras de medula óssea isenta de células.

Não utilizar com amostras de saliva.

A AQUISIÇÃO DESTE PRODUTO CONCEDE AO COMPRADOR DIREITOS SOB CERTAS PATENTES DA ROCHE PARA UTILIZÁLO EXCLUSIVAMENTE PARA O FORNECIMENTO DE SERVIÇOS DE DIAGNÓSTICO IN VITRO HUMANOS. PARA ALÉM DESTE DIREITO ESPECÍFICO DE UTILIZAÇÃO PELO COMPRADOR, NÃO SERÁ CONCEDIDA UMA PATENTE GERAL OU OUTRA LICENÇA DE QUALQUER TPO.

1119793 HB-1861-005 11-2019 © 2019 QIAGEN, todos os direitos reservados.

Encomendas www.qiagen.com/shop | Apoio técnico support.qiagen.com | Site www.qiagen.com