QlAsymphony® RGQ **Application Sheet** artus® EBV QS-RGQ Kit (sample type: plasma) 4501363 artus EBV QS-RGQ Kit, Version 2. QIAGEN GmbH, QIAGEN Strasse 1, D-40724 Hilden 1119830EN availability of electronic labeling new qiagen.com/products/artus-ebv-pcr-kit-ce before test execution. # General Information | Kit | artus EBV QS-RGQ Kit, Version 2 (cat. no. 4501363) | |---|---| | Validated sample material | Human EDTA plasma | | Front-end purification | QlAsymphony DSP Virus/Pathogen Midi Kit
(cat. no. 937055) | | Sample volume (including excess volume) | 1200 µl | | Assay Parameter Set | artus_EBV_plasma1000_V5
MA_artus_EBV_plasma1000_V5* | | Default Assay Control Set | Cellfree1000_V7_DSP_artus_EBV | | Elution volume | الم 60 | | Required software version | Version 4.0 or higher | | Master mix volume | 30 hl | | Template volume | الم 20 | | Number of reactions | 6–24 | | Runtime on AS module | For 6 reactions: approximately 9 minutes For 72 reactions: approximately 35 minutes | ^{*} Protocol for multi-assay run with *artus* CMV QS-RGQ Kit to load CMV RG IC for the purification process and assay setup. ## Materials Required but Not Provided ## Purification kit QlAsymphony DSP Virus/Pathogen Midi Kit (cat. no. 937055) #### Adapters for the QIAsymphony SP - Elution Microtube Rack QS (Cooling Adapter, EMT, v2, Qsym, cat. no. 9020730) - Transfer frame - Tube Insert 3B (Insert, 2.0ml v2, samplecarr. (24), Qsym, cat. no. 9242083) ## Consumables for the QIAsymphony SP - Sample Prep Cartridges, 8-well (cat. no. 997002) - 8-Rod Covers (cat. no. 997004) - Filter-Tips, 1500 µl (cat. no. 997024) - Filter-Tips, 200 µl (cat. no. 990332) - Elution Microtubes CL (cat. no. 19588) - Tip disposal bags (cat. no. 9013395) - Micro tubes 2.0 ml Type H or Micro tubes 2.0 ml Type I (Sarstedt[®], cat. nos. 72.693 and 72.694, www.sarstedt.com) for use with samples and internal controls #### Adapters and reagent holders for the QIAsymphony AS - Reagent holder 1 QS (Cooling Adapter, Reagent Holder 1, Qsym, cat. no. 9018090) - RG Strip Tubes 72 QS (Cooling Adapter, RG Strip Tubes 72, Qsym, cat. no. 9018092) ## Consumables for the QIAsymphony AS - Strip Tubes and Caps, 0.1 ml (cat. no. 981103) - Tubes, conical, 2 ml, Qsym AS (cat. no. 997102) or Micro tubes 2.0 ml Type I (Sarstedt, cat. no. 72.694.005) - Possibly: Tubes, conical, 5 ml, Qsym AS (cat. no. 997104) or Tubes with flat base from PP (Sarstedt, cat. no. 60.558.001) - Filter-Tips, 1500 μl (cat. no. 997024) - Filter-Tips, 200 µl (cat. no. 990332) - Filter-Tips, 50 µl (cat. no. 997120) - Tip disposal bags (cat. no. 9013395) # Specimen Handling and Storage | Blood sample 5–10 ml EDTA blood 8x overhead mix — no agitation! | | |---|--| | Heparinized human samples must not be used. | | | Separation: 20 minutes centrifugation, 800–1600 x g within 24 hours post-collection | | | Transfer the isolated plasma into a sterile polypropylene tube | | | The sensitivity of the assay can be reduced if samples are frozen as a matter of routine or stored for a longer period of time. | | | Shatterproof transport | | | Shipment within 24 hours | | | Mail shipment according to legal instructions for the transport of pathogen material* | | | Blood samples should be shipped cool (2–8°C) | | | Heparin (≥10 IU/ml) affects the PCR. Samples collected in tubes containing heparin as an anticoagulant or samples from heparinized patients must not be used. | | | Prevent formation of foam in or on the samples | | | Samples should be equilibrated to room temperature | | | (15–25°C) before starting the run. | | | | | ^{*} International Air Transport Association (IATA). Dangerous Goods Regulations. ## Procedure Preparation of carrier RNA and addition of the internal control to the samples Using the QIAsymphony DSP Virus/Pathogen Midi Kit in combination with the *artus* EBV QS-RGQ Kit requires introduction of the internal control (EBV RG IC) into the purification procedure to monitor the efficiency of sample preparation and downstream assay. For a multi-assay run where both EBV and CMV will be assayed in the same PCR, make sure that the CMV RG IC, from the *artus* CMV QS-RGQ Kit, is used in the purification process. Use a CMV RG IC from the same lot for both sample preparation and for assay setup of the PCR controls. Do not use a CMV RG IC with a different lot number. Internal controls must be added with carrier RNA (CARRIER)-Buffer AVE (AVE) mixture, and the total volume of the internal control-carrier RNA (CARRIER)-Buffer AVE (AVE) mixture remains $120~\mu$ l. The table represents the addition of internal control to the isolation at a ratio of 0.1 µl per 1 µl elution volume. We recommend preparing fresh mixtures for each run just before use. Alternatively, the "IC Calculator" Tool in the QIAsymphony Management Console may be used. | Component | Volume (µl)
(Sarstedt tubes)* | Volume (μΙ)
(Corning tubes) [†] | |---|----------------------------------|---| | Stock carrier RNA (CARRIER) | 5 | 5 | | Internal control [‡] | 9 | 9 | | Buffer AVE | 106 | 106 | | Final volume per sample (excluding dead volume) | 120 | 120 | | Total volume for n samples | (n x 120) + 360§ | (n x 120) + 600¶ | - * Micro tubes 2.0 ml Type H and Micro tubes 2.0 ml Type I, Sarstedt cat. nos. 72.693 and 72.694. - [†] Tubes 14 ml, 17 x 100 mm polystyrene round-bottom (Corning® Inc., cat. no. 352051; Becton Dickinson was the previous supplier of this tube and Corning Inc. is now the new supplier). - [‡] The calculation of the amount of internal control is based on the initial elution volumes (90 μl). Additional void volume depends on the type of sample tube used. - Internal control mixture corresponding to 3 additional samples (i.e., 360 µl) is required. Do not fill more than 1.92 ml total volume (corresponding to a maximum of 13 samples. These volumes are specific for Micro tubes 2.0 ml Type H and Micro tubes 2.0 ml Type I, Sarstedt cat. nos. 72.693 and 72.694). - ¹ Internal control mixture corresponding to 5 additional samples (i.e., 600 µl) is required. Do not fill more than 13.92 ml total volume (corresponding to a maximum of 111 samples. These volumes are specific for Tubes 14 ml, 17 x 100 mm polystyrene round-bottom, Corning Inc., cat. no. 352051; Becton Dickinson was the previous supplier of this tube and Corning Inc. is now the new supplier). ## QIAsymphony SP setup ## "Waste" drawer | Unit box holder 1–4 | Empty unit boxes | |----------------------------|---------------------------------------| | Waste bag holder | Waste bag | | Liquid waste bottle holder | Empty and install liquid waste bottle | ## "Eluate" drawer | Elution rack | Elution Microtubes CL on Elution Microtube Rack QS and transfer frame Use slot 1, cooling position | |-----------------|---| | Elution volume* | Preselected elution volume: 60 μl
Initial elution volume: 90 μl | ^{*} The elution volume is preselected for the protocol. This is the minimum accessible volume of eluate in the final elution tube. The initial volume of elution solution is required to ensure that the actual volume of eluate is the same as the preselected volume. ## "Reagents and Consumables" drawer | RC Position 1 and 2 | Load 1 reagent cartridge (RC) for up to 48 samples or 2 new reagent cartridges (RC) for up to 96 samples | |--------------------------------|---| | Tip rack holder positions 1–18 | Load sufficient racks of disposable filter-tips, 200 µl and 1500 µl (see "Required plasticware for 1–4 sample batches", page 7) | | Unit box holder position 1–4 | Load unit boxes containing sample prep cartridges and 8-Rod Covers (see "Required plasticware for 1–4 sample batches", page 7) | ## "Sample" drawer | Sample type | Human EDTA Plasma | |---|--| | Sample volume (including excess volume) | ام 1200 | | Sample tubes | Micro tubes 2.0 ml Type H or Micro tubes 2.0 ml Type I (Sarstedt, cat. nos. 72.693 and 72.694) | | Insert | Tube Insert 3B (cat. no. 9242083) | ## Required plasticware for 1-4 sample batches | Component | One batch,
24 samples* | Two batches,
48 samples* | Three batches,
72 samples* | Four batches,
96 samples* | |---|---------------------------|-----------------------------|-------------------------------|------------------------------| | Disposable filter-tips,
200 µl ^{†‡} | 28 | 52 | 76 | 100 | | Disposable filter-tips, 1500 µl†‡ | 113 | 206 | 309 | 402 | | Sample prep cartridges§ | 21 | 42 | 54 | 72 | | 8-Rod Covers¶ | 3 | 6 | 9 | 12 | | | | | | | ^{*} Use of more than one internal control tube per batch and performing more than one inventory scan requires additional disposable filter tips. [†] There are 32 filter-tips/tip rack. [‡] Number of required filter-tips includes filter-tips for 1 inventory scan per reagent cartridge. $^{{}^{\}S}$ There are 28 sample prep cartridges/unit box. ¹ There are twelve 8-Rod Covers/unit box. ## QlAsymphony AS setup #### Consumables During the setup, the appropriate positions for each consumable on the QIAsymphony AS module are indicated on the touchscreen of the instrument. | Consumable | Name on touchscreen | For use with adapter/
reagent holder | |--|---|---| | Strip Tubes and Caps,
0.1 ml (250) | QIA#981103
*StripTubes 0.1 | RG Strip Tubes 72 QS | | Tubes, conical, 2 ml,
Qsym AS (500)†‡ | QIA#997102
*T2.0 ScrewSkirt [§] | Reagent holder 1 QS | | Tubes, conical, 5 ml,
Qsym AS (500)†‡ | QIA#997104
T5.0 ScrewSkirt [§] | Reagent holder 1 QS | ^{} Indicates labware that can be cooled using a cooling adapter with bar code. ## Adapters and reagent holders | Rack/reagent holder | Name | Number required* | | |---------------------|----------------------|------------------|--| | Reagent holders | Reagent holder 1 QS | 1 | | | Sample racks | RG Strip Tubes 72 QS | 1 | | ^{*} Calculated for an assay run with 72 reactions. $^{^\}dagger$ For master mix components, system-prepared master mix, assay standards, and assay controls. [‡] Alternatively, the Sarstedt tubes described in "Materials Required but Not Provided", page 3, can be used. [§] The suffix "(m)" in the touchscreen indicates that liquid level calculations for the respective tube have been optimized for reagents forming a concave meniscus. ## Filter-tips Load tip racks starting with tip slots 1, 2, and 3 in the "Eluate and Reagents" drawer, and then load tip racks into tip slots 7, 8, and 9 in the "Assays" drawer. | Consumable | Name on touchscreen | Minimum number for 24 reactions | Minimum number for 72 reactions | |-----------------------------|---------------------|---------------------------------|---------------------------------| | Filter-Tips, 1500 µl (1024) | 1500 µl | 4 | 5 | | Filter-Tips, 200 µl (1024) | ابر 200 | 9 | 8 | | Filter-Tips, 50 µl (1024) | اµ 50 | 25 | 73 | | Tip Disposal Bags | - | 1 | 1 | ## PCR on the Rotor-Gene Q* Refer to the software-specific protocol sheet *Settings to run* artus *QS-RGQ Kits* at **qiagen.com/products/artus-ebv-pcr-kit-ce** for protocol details. Specific settings for the artus EBV QS-RGQ Kit With Rotor-Gene® software 2.1 or higher, the specific settings are shown below. | Reaction Volume (μΙ) | 50 | |------------------------------|---| | Hold | Hold Temperature: 95 degrees
Hold Time: 10 minutes | | Cycling | 45 times 95 degrees for 15 seconds 65 degrees for 30 seconds (Acquire on Green, Yellow and activate touchdown function for 10 cycles) 72 degrees for 20 seconds | | Auto-Gain Optimisation Setup | 65 degrees (Samples: Green; IC: Yellow) | #### Multi-assay run The detection range of the fluorescence channels has to be determined according to the fluorescence intensities in the PCR tubes. Click **Gain Optimisation** in the **New Run Wizard** dialog box to open the **Auto-Gain Optimisation Setup** dialog box (see Step 6 and Figure 7 in the protocol sheet *Settings to run artus QS-RGQ Kits*). For a single assay run, set the calibration temperature to **65** to match the annealing temperature of the amplification program. For a multi-assay run where both EBV and CMV will be assayed in the same PCR, adjust the fluorescence channel intensities manually. ^{*} If applicable, Rotor-Gene Q 5plex HRM instrument with a production date of January 2010 or later. The production date can be obtained from the serial number on the back of the instrument. The serial number is in the format "mmyynnn" where "mm" indicates the production month in digits, "yy" indicates the last two digits of the production year, and "nnn" indicates the unique instrument identifier. 1. Click Edit (Figure 1) to edit the fluorescence channels. Figure 1. Adjusting the fluorescence channel intensity manually. Adjust the intensity for every fluorescence channel at different tube positions for different assays (CMV and EBV). 2. Set the tube position for a tube for the first *artus* assay (e.g., EBV). Set the tube position for all fluorescence channels, and click **OK** (Figure 2). Figure 2. Setting the tube position. 3. Click **Start** to begin the gain optimization for the first *artus* assay (Figure 3). Figure 3. Starting the gain optimization. Wait until Completed appears in the Running Auto-Gain Optimisation window (Figure 4). Write down the selected gain values for both channels, and then click Close (Figure 4). Figure 4. Gain optimization completed. Note gain values (in this case, 1.33 for both fluorescence channels). 5. Repeat steps 1-4 for a tube position for the second artus assay (e.g., CMV). 6. Click Edit Gain to edit the gain values manually (Figure 5). Figure 5. Editing the gain values manually. 7. Select the lowest gain value for Cycling Green noted in step 4, and enter this value manually in the **Gain for Green** window (Figure 6). Select the lowest gain value for Cycling Yellow noted in step 4, and enter this value manually in the **Gain for Yellow** window (Figure 6). Figure 6. Manually entering the lowest gain values. **Note**: The gain values determined by the channel calibration (or manually assigned) are saved automatically and are listed in the last menu window of the programming procedure (Figure 7). Figure 7. Starting the run. #### 8. Click Start Run. ## Interpretation of results This section describes interpretation of results on the Rotor-Gene Q. Review also the sample status information from the QIAsymphony SP/AS result files for analysis of the complete sample-to-result workflow. Only samples with a valid status should be used. The *artus* EBV QS-RGQ Kit can be run on the Rotor-Gene Q using manual analysis with Rotor-Gene Q software 2.1 or higher. The following sections describe interpretation of results using Rotor-Gene Q software 2.1 or higher. #### Signal detection and conclusions — plasma | Signal in channel
Cycling Green | Signal in channel
Cycling Yellow | Quantitative result
(copies/ml) | Interpretation | |------------------------------------|-------------------------------------|------------------------------------|---| | Yes | Yes | <157 | Valid result: EBV DNA detected,
<157 copies/ml. | | | | | Quantitation not possible since the quantitative result is below limit of detection. Reproducibility of the positive result is not assured. | | Yes | Yes | ≥157 and <631 | Valid result: EBV DNA detected,
<631copies/ml. | | | | | Quantitation not possible since the quantitative result is below the linear range of the assay. | | Yes | Yes/No** | ≥631 and
≤1 x 10 ⁷ | Valid result: EBV DNA detected at the calculated concentration. Quantitative result is within the linear range of the assay. | | Yes | Yes/No** | >1 x 10 ⁷ | Valid result: EBV DNA detected,
>1 x 10 ⁷ copies/ml.
Quantitation not possible since the quantitative
result is above the linear range of the assay.* | | No | Yes | - | Valid result: No EBV DNA is detectable. [↑] | | No | No | - | Invalid result: No result can be concluded.‡ | - * If quantitation is desired, dilute the sample with EBV-free plasma and reprocess. Multiply the quantitative result from the reprocessed sample by the dilution factor. - [†] If the C_T value for the internal control of a negative sample is more than 3 cycles higher than the C_T value for the internal control of the no template control in the run ($C_{T \mid C \mid Sample} C_{T \mid C \mid NTC} > 3$), then the sample should be treated as invalid. No result can be concluded. - † Information regarding error sources and their solution can be found in "Troubleshooting Guide" of the artus EBV QS-RGQ Kit Handbook. - ** In this case, the detection of a signal in the Cycling Yellow channel is dispensable, since high initial concentrations of EBV DNA (positive signal in the Cycling Green Channel) can lead to a reduced or absent fluorescent signal of the internal control in the Cycling Yellow channel (competition). #### Threshold setup for the PCR analysis The optimal threshold settings for a given combination of Rotor-Gene Q instrument and *artus* QS-RGQ Kit should be set empirically by testing each individual combination since it is a relative value depending on the overall diagnostic workflow. The threshold can be set at a preliminary value of 0.04 for the analysis of the first PCR run, but this value should be fine-tuned in a comparative analysis of the next runs of the workflow. The threshold should be set manually just above the background signal of the negative controls and negative samples. The mean threshold value calculated from these experiments will most likely work for the majority of future runs, but the user should nevertheless review the generated threshold value at regular intervals. The threshold value will usually be in the range of 0.03–0.05 and should be rounded to no more than three decimal places. #### Quantitation The quantitation standards (EBV QS 1–4) in the *artus* EBV QS-RGQ Kit are treated as previously purified samples and the same volume is used (20 μ l). To generate a standard curve on Rotor-Gene Q instruments, all 4 quantitation standards should be used and defined in the **Edit Samples** dialog box on the Rotor-Gene Q instrument as standards with the specified concentrations (see the instrument user manual). Note: The quantitation standards are defined as copies/ μ l in the eluate. The following equation has to be applied to convert the values determined using the standard curve into copies/ml of sample material. As a matter of principle, the initial sample volume should be entered in the equation above. This has to be considered when the sample volume has been changed prior to the nucleic acid extraction (e.g., reducing the volume by centrifugation or increasing the volume by adding to the volume required for the isolation). For a multi-assay run where both CMV and EBV were assayed in the same PCR, make sure that samples are analyzed separately for CMV and EBV, with the corresponding quantitation standards. #### Conversion factor 1 copy/ml corresponds to 0.142 IU/ml for detection of EBV DNA derived from human EDTA plasma on the Rotor-Gene Q. This conversion factor applies when adhering to the validated workflow as stated on this Application Sheet. The conversion factor is an approximation based on an average factor across the assay's dynamic range. ^{*} The calculation is based on the initial elution volumes (90 μ l). ## Examples of positive and negative PCR reactions **Detection of the quantitation standards (EBV QS 1-4) in fluorescence channel Cycling Green.** NTC: No template control (negative control). Detection of the internal control (IC) in fluorescence channel Cycling Yellow with simultaneous amplification of the quantitation standards (EBV QS 1-4). NTC: No template control (negative control). # Document Revision History | Date | Changes | | |---------------|--|--| | R1
11/2019 | Updated <i>artus</i> EBV QS-RGQ Kit version from Version 1 to Version 2. | | For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at **www.qiagen.com** or can be requested from QIAGEN Technical Services or your local distributor. Trademarks: QIAGEN®, Sample to Insight®, QIAsymphony®, artus®, Rotor-Gene® (QIAGEN Group); BD™ (Becton, Dickinson and Company); Corning® (Corning Inc.); Sarstedt® (Sarstedt AG and Co.). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law. 11/2019 HB-2733-S02-001 © 2019 QIAGEN, all rights reserved