DNA quality measurement and somatic mutation profiling in PAXgene tissue samples with qBiomarker Somatic Mutation PCR Arrays

Samuel Long¹, Daniel Groelz¹, Lili Yang², Sally Yousif¹, Karen Rodland¹, Sunita Badola² and Eric Lader¹ ¹QIAGEN Sciences Inc., 6951 Executive Way, Frederick, MD 27103; ² Millennium Pharmaceuticals, Inc., 40 Landsdowne St., Cambridge, MA 02139

Abstract

Current formaldehyde-based tissue fixation methods are of limited use for molecular analysis due to degradation and chemical modification of nucleic acids that can cause inhibition in PCR or real-time PCR. The PAXgene Tissue Kit is a novel, powerful system that enables both molecular and traditional pathology analysis from the same specimen. The system consists of a tissue collection device (tissue container for collection, stabilization, storage, and transportation of tissue specimens) and kits for purification of nucleic acids. The fixation and stabilization method used in this system preserves tissue morphology and the integrity of nucleic acids for an extended period without the destructive cross-linking and degradation found in formalin-fixed tissues. In addition, samples stabilized using the PAXgene Tissue Kit can be embedded in paraffin for histological studies. Nucleic acids can be isolated from the stabilized samples either before or after embedding in paraffin.

In the present study, the specialized qBiomarker Somatic Mutation PCR Array for Human DNA QC assessment, which consists of a panel of 7 copy number PCR control assays, was employed to compare the quality of DNA extracted from fresh frozen, formaldehyde-fixed, and PAXgene tissues that were prepared at the same time, from the same set of mouse xenograft samples of human melanoma. The DNA quality of PAXgene tissue samples was found to be similar to that of fresh frozen samples (i.e. intact DNA), while more than 80% of the DNA fraction in formaldehyde-fixed samples exists in non-amplifiable fractions under typical real-time PCR conditions.

Performance of PAXgene Tissue Kit in

preserving morphology of surgically resected tissues

DNA integrity of PAXgene-preserved tissues is far superior to that of FFPE samples

	cancer		Breast c	ancer		В	1	2	3		4	5	6	7	8	9	10	11	12
LN2 PFPI	E FFPE	LN2	PFP	E FF	PE		A BR	AF BR.	AF BI	RAF	BRAF	BRAF	BRAF	BRAF	BRAF	BRAF	BRAF	BRAF	BRAF
							B KR	AS KR	AS KI	RAS	KRAS	KRAS	KRAS	KRAS	KRAS	KRAS	KRAS	KRAS	KRAS
23 kb > 🔤 🗂 🗂 🗑 📷							с ня	VAS HR	AS H	IRAS	HRAS	HRAS	HRAS	HRAS	HRAS	HRAS	HRAS	HRAS	HRAS
		-			-		D NP	VAS NR	AS N	IRAS	NRAS	NRAS	NRAS	NRAS	NRAS	NRAS	NRAS	NRAS	NRAS
		-	=	-	=		E MI	EK1 ME	K1 M	1EK1	MEK1	MEK1	MEK1	MEK1	MEK1	MEK1	MEK1	MEK1	MEK1
							F PIK	(3CA PIK	3CA PI	IK3CA	PIK3CA	PIK3CA	РІКЗСА	РІКЗС А	PIK3CA	PIK3CA	РІКЗС А	PIK3CA	PIK3CA
							G PT	EN PTI	EN P	TEN	PTEN	PTEN	PTEN	PTEN	PTEN	PTEN	PTEN	PTEN	PTEN
,	a de la compañía de l						H SN	1PC SM	IPC SI	MPC	SMPC	SMPC	SMPC	SMPC	SMPC	SMPC	SMPC	SMPC	SMPC
				Fresh	frozen							Se	t QC	С _т а	veraç	ge S	Set Q	<mark>С С</mark> т	Std.
Sample ID	PHTX004683 PH	HTX004684 F	PHTX004685 P	HTX004686	PHTX004687	PHTX004	688 F	РНТХ00	4689	PHT	X00469	0		-				-	
Sample QC C_T average	29.14	29.06	29.23	29.24	28.02	28	3.73	2	8.92	2	27.8	37			2	8.78			
				PAX	gene														
Sample ID	PHTX004973 PI	HTX004974	PHTX004961 P	HTX004963	PHTX004969	PHTX004	971 F	PHTX00	4981	РНТХ	X00498	3							
Sample QC C_T average	28.96	29.16	29.08	29.14	28.99	28	3.72	2	8.13	3	28.2	21			2	28.8			
				FF	PE														
Sample ID	PHTX004977 PI	HTX004978	PHTX004962 P	HTX004964	PHTX004970	PHTX004	972 F	PHTX00	4982	PHT	X00498	4							
Sample QC C ₊ average	30.69	31.1	32.04	32.12	30.96	31	.17	3	0.34	1	30.6	65			3	1.13			

The Human EGFR Pathway qBiomarker Somatic Mutation PCR Array was used to profile the mutation status in these melanoma xenograft samples for the following genes: EGFR, BRAF, KRAS, NRAS, HRAS, c-MET, PIK3CA, AKT and PTEN. While the identical set of BRAF and NRAS mutations was identified in DNAs from samples of all three preparation methods, at all DNA input doses tested (200 ng per sample as the lowest dose for screening 87 mutations, and up to 1200 ng per sample), the mutation call was at least 4-fold more sensitive in DNA extracted from PAXgene samples and fresh frozen samples than that from the FFPE DNA. In addition, when duplicate samples were compared, among the three sample preparation methods, PAXgene sample DNA quality showed the least variability between duplicate samples. This consistency in sample quality also translated into the highest reproducibility in mutation calls among the three sample preparation methods.

The PAXgene Tissue System, with its excellent tissue morphology preservation and close-to-intact level of nucleic acid preservation, is an ideal system for molecular and histological testing of research samples. The combination of the PAXgene Tissue Kit with disease- or pathway-focused qBiomarker Somatic Mutation PCR Arrays allows specific, highly sensitive, and accurate somatic mutation detection in tumor samples (especially for mutations occurring at a low frequency), and has distinct advantages over other systems that are used for sample stratification.

The applications presented here are for research use only. Not for use in diagnostic procedures.

PAXgene Tissue System workflow and experimental design

Figure 2. Tissue morphology preservation by the PAXgene Tissue Kit. Morphology of H&E (hemotoxylin and eosin) stained, mirrored human spleen, liver, pancreas and large intestine tissue sections (4 μ m), preserved either by PFPE (PAXgene Tissue fixed, paraffin embedded) or FFPE (formalin-fixed). Surgically resected tissues were collected by a commercial tissue provider (Cureline) with prior written informed consent from respective patients. Spleen and liver: original magnifications x 10; pancreas and large intestine: original magnifications x 20.

qBiomarker Somatic Mutation PCR Assay principle and performance

Figure 5. DNA integrity comparison among fresh frozen, PAXgene tissue, and FFPE samples. [A] Analysis of 300 ng DNA in agarose gel (0.8%) electrophoresis. DNA was isolated from mirrored human tumor tissues (left: colorectal cancer; right: breast cancer) that were fresh frozen (liquid nitrogen snap frozen; LN2), PAXgene Tissue fixed and embedded in paraffin (PFPE), or FFPE. [B] qBiomarker Somatic Mutation PCR Array DNA QC plate layout. 7 probe-based gene copy number reference assays are used to interrogate sample DNA quality, while the SMPC assay monitors the presence of PCR inhibitors in the sample. Each 96well plate can be used to QC 12 DNA samples, and each 384-well plate can QC 48 DNA samples. [C] Realtime PCR DNA quality analysis of DNAs from 4 mouse xenografts of human melanoma (color-coded gray, light blue, pink and light green) that were preserved by liquid nitrogen snap frozen (fresh frozen), PAXgene tissue kit followed by paraffin embedding (PAXgene), or formalin fixation (FFPE) at the same time. For each preservation method, each sample was prepared in duplicates. About 8 weeks after preservation processing, DNA was isolated from the samples using QIAamp DNA Mini Kit (fresh frozen), PAXgene Tissue DNA Kit, and QIAamp DNA FFPE Tissue Kit, respectively. Purified DNA samples were then analyzed on the qBiomarker Somatic Mutation PCR Array DNA QC plate at an input of 2 ng DNA per reaction. Sample QC C_{T} average: the average of the C_{T} values of the 7 gene copy number reference assays for the sample. Set QC C_{τ} average: the average of the "sample QC C_{τ} average" for the 8 samples with the same preservation method. On average, more than 80% of the DNA fraction in FFPE samples exists in non-amplifiable fractions under typical real-time PCR conditions, as compared to fresh frozen and PAXgene sample.

Somatic mutation detection in PAXgene tissue samples using qBiomarker Somatic Mutation PCR Array

	A																		
	1	2	3	4	5	6		7		8		9		10		11		12	
	AKT1	BRAF	BRAF	BRAF	BRAF	BRAF	BI	RAF	BF	RAF	В	RAF	E	GFR		EGFR		EGFR	
,	33765	450	451	460	470	1130	4	476	18	3443	43 F		6252		6253			6239	
Α	c.49G>A	c.1391G>T	c.1397G>T	c.1406G>C	c.1789C>G	c.1798G>A	c.17	'99T>A	c.179	99T>C	c.17	'99T>G	c.21	55G>A	c	.2155G>T		c.2156G>C	
	p.E17K	p.G464V	p.G466V	p.G469A	p.L597V	p.V600M	p.V	/600E	p.V	/600A	p.\	/600G	p.C	5719S		p.G719C		p.G719A	
	EGFR	EGFR	EGFR	EGFR	EGFR	EGFR	E	GFR	EG	GFR	E	GFR	E	GFR		EGFR		EGFR	
В	6223	6225	12728	12678	12422	6220	62	218	18 6		1	2369	6241			12376		12378	
Ы	c.2235_2249del15	c.2236_2250del15	c.2236_2253del18	c.2237_2251del15	c.2238_2248>GC	c.2238_2255del18	c.2239_	_2247del9	c.2239_2	2256del18	c.2240_	2254del15	54del15 c.2303G>T		c.2307_23	08insGCCAGCG	TG c.23	10_2311insGGT	
	p.E746_A750del	p.E746_A750del	p.E746_T751del	p.E746_T751>A	p.L747_A750>P	p.E746_S752>D	p.L747_	_E749del	p.L747_	_S752del	p.L747	_T751del	р.8	S768I	p.V76	9_D770insASV	p.D	770_N771insG	
	EGFR	EGFR	EGFR	EGFR	EGFR	KRAS	K	RAS	KF	RAS	к	RAS	K	RAS		KRAS		KRAS	
С	12377	6240	12366	6224	6213	552	5	553	5	555	517		Ę	518		516		521	
	c.2319_2320insCAC	c.2369C>T	c.2572C>A	c.2573T>G	c.2582T>A	c.182A>G	c.18	.82A>T c.1		83A>T c.3		34G>A c.3		4G>C	c.34G>T			c.35G>A	
	p.H773_V774insH	p.T790M	p.L858M	p.L858R	p.L861Q	p.Q61R	p.0	.Q61L p.(Q61H p.		.G12S p./		G12R		p.G12C		p.G12D	
D	KRAS	KRAS	KRAS	KRAS	KRAS	KRAS	K	(RAS K		RAS P		RAS H		RAS		HRAS		HRAS	
	522	520	528	529	527	532	5	533	534		543		496		499			498	
	c.35G>C	c.35G>T	c.37G>A	c.37G>C	c.37G>T	c.38G>A	c.38	c.38G>C		8G>T	c.6	4C>A	c.18	31C>A	c.182A>G			c.182A>T	
	p.G12A	p.G12V	p.G13S	p.G13R	p.G13C	p.G13D	р.С	.G13A p		.G13V).Q22K p		Q61K	p.Q61R			p.Q61L	
	HRAS	HRAS	HRAS	HRAS	HRAS	HRAS	HF	RAS	HF	RAS	N	NRAS		NRAS		NRAS		NRAS	
E	502	480	482	481	484	483	4	486	4	188		580	582		584			583	
-	c.183G>T	c.34G>A	c.34G>C	c.34G>T	c.35G>A	c.35G>T	c.37	:.37G>C		37G>T c.1		81C>A c.1		32A>C	c.182A>G			c.182A>T	
	p.Q61H	p.G12S	p.G12R	p.G12C	p.G12D	p.G12V	p.0	G13R	p.G	G13C	р.	Q61K	р.(Q61P	P p.Q61R			p.Q61L	
	NRAS	NRAS	NRAS	NRAS	NRAS	NRAS	N	RAS	NRAS		N	IEK1	М	EK1		MEK1		MEK1	
_	563	564	565	569	573	575	5	574		577									
Г	c.34G>A	c.35G>A	c.35G>C	c.37G>C	c.38G>A	c.38G>C	c.3	c.38G>T		c.52G>A		167A>C		171G>T		199G>A		371C>T	
	p.G12S	p.G12D	p.G12A	p.G13R	p.G13D	p.G13A	p.0	.G13V p		A18T	C	256P	56P K			D67N		P124L	
	PIK3CA	PIK3CA	PIK3CA	PIK3CA	PIK3CA	PIK3CA	PIK	IK3CA F		TEN	P	TEN P		TEN		PTEN		PTEN	
	759	760	763	764	765	775	7	776		033	Ę	219	5	152	5089			5039	
G	c.1616C>G	c.1624G>A	c.1633G>A	c.1634A>G	c.1635G>T	c.3140A>G	c.31	3140A>T c.3		39G>A c.3		388C>G c.3		38C>T	c.517C>T			c.518G>A	
	p.P539R	p.E542K	p.E545K	p.E545G	p.E545D	p.H1047R	p.H [*]	1047L	p.R ⁻	130Q	p.F	R130G	p.F	R130*	p.R173C			p.R173H	
	PTEN	AKT1	BRAF	EGFR	KRAS	HRAS	N	RAS	ME	IEK1		YIK3CA F		TEN		SMPC		SMPC	
н	5154																		
	c.697C>T	copy number assay	copy number assay	copy number assay	copy number assay	copy number assay	copy nun	mber assay	copy num	nber assay	ber assay copy nur		Imber assay copy nur		positi	sitive PCR control	posi	tive PCR control	
						F-													
D Fresh trozen																			
			PHTX004683 PI		84 PHTX0046	585 PHTX004	.686 F	PHTX0046	687 P	PHTX0046	HTX004688		PHTX004689		690				
	BRAF V600E Ct			40	40 2	28.58	29.14	40		40		27.7		27.7		26.82			
	NRAS Q61K Ct			40	40	40	40		27.07		7.72	7.72 37.19		7.19					
		PAXgene																	
	Sam	nple ID	PHTX0049	PHTX004973 PHTX00497		961 PHTX004	.963 F	PHTX004969		PHTX004971		PHTX004981		PHTX004983					
				10	10		200 0 4	27.40				07.50							
				40	40 4	20.07	20.04	3	37.18		30.34		21.52		27.02				
	NRA	S Q61K Ct		40 3	<mark>37.13</mark>	40	40 27.91			28.13		40			40				
							FFF	PE											
	Sam	ple ID	PHTX0049	77 PHTX0049	78 PHTX0049	962 PHTX004	964 F	PHTX0049	HTX004970 P		PHTX004972		PHTX004982		984				
	BRAF V600E C			40	40	31.21	31.29		40		40	2	8.76		29				
	NRAS Q61K Ct			40	40	40	40 2		9.88		30		40	0 4					

Figure 1. PAXgene Tissue System workflow and experimental design.

(A) The PAXgene Tissue System provides a fixation and stabilization method that preserves tissue morphology and the integrity of nucleic acids without destructive cross-linking and degradation found in formalin-fixed tissues. The system consists of a tissue collection device (the PAXgene Tissue Container for collection, stabilization, storage, and transportation of human tissue specimens) and kits for purification of total RNA, DNA, or miRNA. The Tissue Container is a dual-chamber container prefilled with two reagents. Chamber 1 contains PAXgene Tissue Fix. Tissue samples with a maximum size of 4 x 15 x 15 mm can be fixed in chamber 1 for 2 to 24 hours. After fixation, the tissue cassette is transferred to Chamber 2 containing PAXgene Tissue Stablizer for storage for a minimum of 7 days at room temperature or for a minimum of 4 weeks at 2–8°C, depending on tissue type. Tissues in PAXgene Tissue Stablizer can also be stored at -20 to -80°C for long-term storage without negative effects on tissue morphology or nucleic acid integrity. Stabilized samples can be processed and embedded in paraffin for histological studies. Nucleic acids and proteins can be isolated from the stabilized PFPE (PAXgene Tissue fixed, paraffin-embedded) which can be used for downstream analyses such as DNA analysis including mutation profiling (this study), gene expression quantitation, next generation sequencing and 2-D gel electrophoresis. (B) Experimental design to compare the DNA quality (Figure 5C) and mutation detection performance (figure 6) in fresh frozen, PAXgene tissue and FFPE samples.

Figure 3. qBiomarker Somatic Mutation PCR Assay principle and performance. [A] qBiomarker Somatic Mutation PCR Assays employ ARMS primers to differentiate between mutant and wild-type alleles using template matches and mismatches at a primer's 3' end. An ARMS primer that has a match to the mutant template at the 3' end, which is mismatched with the wild-type, will extend on the mutant instead of the wild-type template. Additional mismatch(es) can be included in the ARMS primer to increase allele discrimination. Amplicons containing the mutation are subsequently detected by a probe. [B] Assay sensitivity test for p53 R280K qBiomarker Somatic Mutation PCR Assay. A series of 10 ng genomic DNA samples, which contain 4, 21, 106, 528, 2640 and 13200 copies of mutant DNA template respectively, from MDA-MB-231 cell line (mutant harboring the p53 R280K mutation) mixed with genomic DNA from the Coriell GM00131 cell line (wild-type), were tested with the p53 R280K mutation assay. Amplification plots for duplicate reactions are shown. Mutation detection limit for this assay is determined to be 0.03%.

Figure 6. Somatic mutation profiling in mirrored fresh frozen, PAXgene and FFPE samples using the EGFR pathway qBiomarker Somatic Mutation PCR Array. [A] Assay layout of the EFGR pathway qBiomarker Somatic Mutation PCR Array. Three categories of probe-based assays are included on this array. Firstly, mutation detection assays are included for the most frequently occurring somatic mutations for genes in the EGFR pathway. Gene copy number reference assays are also incorporated for all genes covered on this array. These assays provide DNA quality and gene dosage information during data analysis. Finally, SMPC assays are included for monitoring PCR conditions, such as the presence of PCR inhibitors. [B] More robust performance of PAXgene samples compared to FFPE samples in real time PCR-based somatic mutation analysis. The samples in Figure 5(C) were profiled on the EGFR pathway qBiomarker Somatic Mutation PCR Array (4ng DNA per reaction) and C_T values for selected loci are shown. On average, mutation call was at least 4 fold more sensitive (i.e. Cts ≥ 2 Ct lower) in DNA extracted from PAXgene and fresh frozen samples than FFPE DNA. C_T values in black: wildtype calls; C_T values in green: mutant.

Conclusions

Tissue morphology preservation in PAXgene tissue samples is comparable to or better than FFPE samples of the same age.

Figure 4. qBiomarker Somatic Mutation PCR Array workflow. The procedure involves DNA extraction, qPCR detection on qBiomarker Somatic Mutation PCR Arrays, and data analysis (using the qBiomarker Somatic Mutation Data Analysis Template or web portal). The arrays can be used on all real-time cyclers except the Cepheid[®] SmartCycler[®] and the Roche[®] LightCycler[®] 2.0.

DNA isolated from PAXgene tissues is mostly in 10 to 23 kb molecular weight range, which translates to significantly higher amplifiable fractions in real-time PCR.

Question and the provide the provide the provided and the provided and

Mutation detection in PAXgene samples is at least 4-fold more sensitive than in FFPE samples; the combination of the PAXgene Tissue Kit with qBiomarker Somatic Mutation PCR Arrays allows specific, highly sensitive, and accurate somatic mutation detection in tumor samples, and has distinct advantages over other systems that are used for sample stratification.

The applications presented here are for research use only. Not for use in diagnostic procedures.

