Q-Rex Absolute Quantification HID Plug-in User Manual

For use with the Q-Rex Software v1.0 to calculate absolute concentration of targets by PCR $% \left({{{\rm{PCR}}} \right) = {{\rm{CR}}} \right)$

Contents

1	1 Introduction				
	1.1	Important Note			
	1.2	About this user manual1-2			
	1.3	General information1-3			
		1.3.1 Technical assistance1-3			
		1.3.2 Policy statement1-3			
		1.3.3 Version management1-3			
	1.4	Getting help1-3			
2		ing with absolute quantification HID iments			
	2.1	Set up an experiment2-2			
	2.2	Run an experiment			
	2.3	Analyze an experiment			
		2.3.1 Add an analysis			
		, 2.3.2 View plots			
		2.3.2.1 View standard curve plot2-5			
		2.3.3 Define analysis parameters2-7			
		2.3.3.1 Define absolute quantification parameters2-8			
		2.3.3.2 Reuse of standard curves2-9			
		2.3.3.3 Compensating crosstalk2-12			
		Performing crosstalk compensation2-13			
		Defining crosstalk compensation settings2-14			
		Saving compensation factors2-17			
		Loading compensation factors2-19			
		2.3.3.4 Copy analysis parameter2-22			
		2.3.4 View results			
		2.3.4.1 Tubes View			
		2.3.4.2 Samples View2-26			

		2.3.4.3 Groups View	2-27
	2.4	Report and export results	2-28
	2.5	Troubleshooting	2-29
	2.6	Glossary	2-30
3	Арре	andices	3-2
3		andices Appendix A – Limited License Agreement	
3	3.1		3-2

Introduction

1 Introduction

Plug-ins for the Q-Rex Software grant additional analysis capabilities. Plug-ins for the Q-Rex Software cannot be used without the main software component. Familiarize yourself with the Q-Rex Software before installing and using plug-ins.

The QRex Absolute Quantification HID Plug-in calculates the absolute concentration of targets in experimental samples using the amplification curves of samples of known concentration to establish a standard curve that correlates Cq value (y-axis) and target concentration (x-axis). The QRex Absolute Quantification HID Plug-in has an automatic threshold function based on the defined standards that scans through all possible threshold levels until the best fit is found for the standard curve. The threshold can also be set manually.

1.1 Important Note

The Q-Rex Absolute Quantification HID Plug-in User Manual provides general information about the software settings. The recommended product-specific settings are described in the corresponding kit handbooks, available on individual product pages at **www.qiagen.com**. The currently available QIAGEN HID quantification products belong to the Investigator Quantiplex series.

1.2 About this user manual

This user manual provides information about the functions and features of the Q-Rex Absolute Quantification HID Plug-in. You will find general information about the functions and features of the Q-Rex Software in the Q-Rex Software User Manual.

Installing the QRex Absolute Quantification HID Plug-in impacts only analysis aspects of the QRex Software. This user manual describes changes to settings and functionalities necessary to perform the analyses enabled by the QRex Absolute Quantification HID Plug-in. All other aspects of the QRex Software remain unchanged, and therefore, instructions in the QRex Software User Manual remain valid. Make sure to read the QRex Software User Manual and pay particular attention to the listed limitations and warnings before working with the software.

Please refer to the *Rotor-Gene Q Manual* for complete information about the proper care, maintenance and use of the Rotor-Gene Q Instrument.

This user manual provides information about the Q-Rex Absolute Quantification HID Plug-in in the following sections:

- Introduction
- Set up an experiment
- Run an experiment
- Analyze an experiment
- Report and export results
- Troubleshooting

1.3 General information

1.3.1 Technical assistance

At QIAGEN, we pride ourselves on the quality and availability of our technical support. Our Technical Service Departments are staffed by experienced scientists with extensive practical and theoretical expertise in sample and assay technologies and the use of QIAGEN products. If you have any questions or experience any difficulties regarding the Rotor-Gene Q, Q-Rex Software, the Q-Rex Absolute Quantification HID Plug-in or QIAGEN products in general, please do not hesitate to contact us.

QIAGEN customers are a major source of information regarding advanced or specialized uses of our products. This information is helpful to other scientists as well as to the researchers at QIAGEN. We therefore encourage you to contact us if you have any suggestions about product performance or new applications and techniques.

For technical assistance and more information, please see our Technical Support Center at **www.qiagen. com/Support**.

1.3.2 Policy statement

It is the policy of QIAGEN to improve products as new techniques and components become available. QIAGEN reserves the right to change specifications at any time.

In an effort to produce useful and appropriate documentation, we appreciate your comments on this user manual. Please contact QIAGEN Technical Services.

1.3.3 Version management

This document is the *Q-Rex Absolute Quantification HID Plug-in User Manual*, which provides information about the *Q-Rex Absolute Quantification HID Plug-in*, version 1.0.

1.4 Getting help

Please refer to "Getting help" in the *Q-Rex Software User Manual* for a description of the available help function.

Working with absolute quantification HID experiments

2 Working with absolute quantification HID experiments

2.1 Set up an experiment

For all general information on how to set up a new experiment, refer to "Set up a new experiment" or "Set up an experiment via wizard" in the *Q-Rex Software User Manual*.

In absolute quantification human identification analysis, you must define standards and their concentrations to enable the calculation of target concentrations in experimental samples. Determine absolute concentrations of the standard samples by an independent method. A threshold is set during the analysis at the exponential phase of the amplification reaction for each standard to determine the Cq value corresponding to the concentration.

An experiment must meet the following requirements to perform an Absolute Quantification HID analysis:

- At least 2 tubes are assigned the sample type Standard.
- The standards have a defined valid concentration.
- Tubes containing standards must render a valid Cq value.

To define tubes as standards:

- 1. Click the Sample Layout step in the Step Marker of the Experiment environment.
- 2. Select the cells in the **Sample type** column (1) corresponding to the tubes.
- 3. Right-click the selected cells and select **Standard** in the context menu (2).
- 4. Enter a concentration value for each standard in the Conc. column (3).

						Gree	n	
Tube	Color	Style	Name	Туре		Target	Conc.	Unit
1			20ng/µl Z1 DNA	Standard		Human	20 ③	ng/µl
2			20ng/µl Z1 DNA	Standard		Human	20	ng/µl
3			5ng/µI Z1 DNA	Standard (1	Human	5	ng/µl
4			5ng/µI Z1 DNA	Standard		Human	5	na/ul
5			1,25ng/µl Z1 DNA	Standard		Not in us Sample	e	
6			1,25ng/µl Z1 DNA	Standard		PC		
7			0,3125ng/µl Z1 DNA	Standard		NTC		
8			0,3125ng/µl Z1 DNA	Standard		NC		
9			0,078125ng/µl Z1 DNA	Standard	2	Standard		
10			0,078125ng/µl Z1 DNA	Standard	-			
11			0,01953125ng/µl Z1 DNA	Standard		Cut		Ctrl+X
12			0,01953125ng/µl Z1 DNA	Standard		Delete		Del
13			NTC	NTC		Copy Paste		Ctrl+C Ctrl+V
14			NTC	NTC	_	Faste		
15			sample 1	Sample		Human	0	ng/µl
16			sample 1	Sample		Human	0	ng/µl

2.2 Run an experiment

To run an experiment, see "Run an experiment" in the Q-Rex Software User Manual.

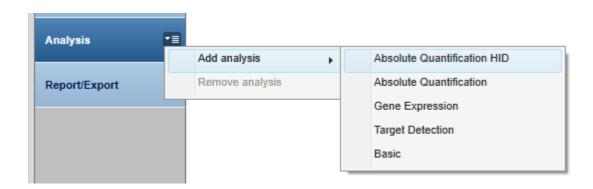
2.3 Analyze an experiment

The following sections describe using the Q-Rex Absolute Quantification HID Plug-in to determine absolute concentrations of samples:

Add an analysis

View plots

Define analysis parameters


View results

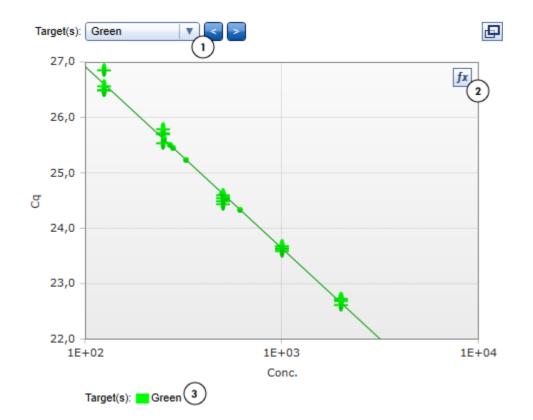
For a description of general use concepts of the Q-Rex Software, see "Analyze an experiment" in the Q-Rex Software User Manual.

2.3.1 Add an analysis

For general information on how to add an analysis in the Q-Rex Software, see "Add an analysis" in the Q-Rex Software User Manual.

If the Q-Rex Absolute Quantification HID Plug-in was installed correctly, a menu item for the plug-in will appear in the list of available analyses:

2.3.2 View plots


In addition to the Raw Data and Normalized Data fluorescence plots, analysis with the Q-Rex Absolute Quantification HID Plug-in offers a Standard Curve plot.

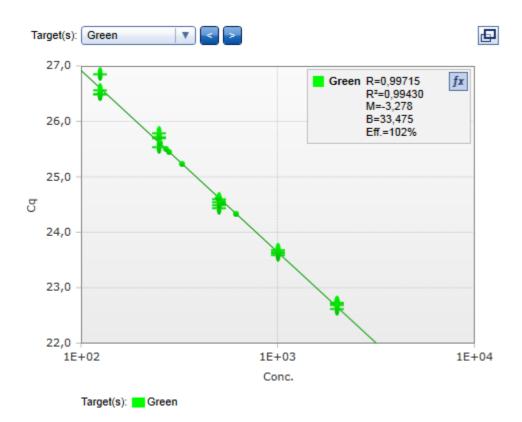
For detailed information regarding the Standard Curve plot, refer to the "View standard curve plot" section.

For an overview of fluorescence plots in the Q-Rex Software, see "View fluorescence plots" in the Q-Rex Software User Manual.

2.3.2.1 View standard curve plot

The Standard Curve plot is displayed in the lower right area of the screen in the Analysis step.

The plot includes the following elements:


- A Target Selector (1)
- An icon to show the standard curve formula (2)
- A legend (3)

Use the **Target Selector** to display the standard curve of the analyzed targets. You can browse through a list of targets using the **Forward** and **Back** buttons.

Note: You can view multiple targets in the same standard curve plot window. The curves of the different targets are color-coded.

Crosses on the curve represent the samples defined as standards and dots are the data points of the experimental samples.

To display the standard curve formula, click the icon. The formula values appear in a layer over the plot.

The following calculated values are displayed in the plot:

Calculated value	Definition
R-value	The correlation coefficient indicates the percentage of the data that are consistent with the statistical hypothesis.
R ² -value	The square of the correlation coefficient indicates how well the data points from the standards lie on a straight line. A value of 1.0 would be a perfect fit, a value of 0 would indicate a random distribution. If the value is much lower than 1.0, this might indicate problems with the standards.
Slope and intercept	Based on the linear formula y = MX + B, the slope (M) and the intercept (B) of the standard curve are automatically calculated and displayed.
Efficiency	The reaction efficiency of the run.

Note: Varying the threshold level in the standard curve causes the values to be dynamically recalculated. To change the threshold level, either click and drag the threshold line in the active plot or change the value in the **Analysis** tab of the **Drawer**.

2.3.3 Define analysis parameters

To define analysis parameters for each target, open the **Analysis** tab of the **Drawer** in the **Experiment** environment.

Analysis	Tube Selecto	r			
Target Green 1					
Filter d	lata				
Norma	lization				
Cq cal	culation				
Threshold		0,1			
Threshold st	Threshold start cycle				
Calculate auto threshold					
Standa	rd curve				
Impor	t	Export			
Imported st	andard curve:				
Unload					
Crosstalk compensation					
Copy settings	to ▼ ОК				

The active target for which the analysis parameters are defined is displayed at the top of the tab (1). This is the target selected in the active plot window. If multiple targets are selected in the active plot window, this field remains empty and analysis parameters cannot be edited.

Note: Reasonable default values are defined for most analysis parameters. If parameters must be defined, their entry fields are highlighted in yellow. Unless these required parameters are defined, the corresponding input fields appear as invalid and results cannot be displayed. If an invalid input field is hidden, the surrounding parameter group, the **Analysis** tab or even the **Drawer** itself are shown as invalid.

Note: More information on how to analyze data obtained using QIAGEN HID Kits can be found in the corresponding kit handbooks.

Define the following parameter groups for absolute quantification human identification analysis:

Optional: Melt peak analysis	Melt peak analysis option is only visible if melt data are available for the experiment. See the <i>Q-Rex Software User Manual</i> for details.
Cq calculation	See the "Define absolute quantification parameter" for details.
Normalization	See the Q-Rex Software User Manual for details.
Filter data	See the <i>Q-Rex Software User Manual</i> for details.

Optionally, the following additional analysis features can be used:

Standard curve	See the "Reuse of standard curves" for details.
Crosstalk compensation	See "Compensating crosstalk".
Copy settings to	See "Copy analysis parameters".

2.3.3.1 Define absolute quantification parameters

In the **Analysis** tab of the **Drawer**, you can either manually define a Cq threshold or have the Q-Rex Absolute Quantification HID Plug-in to **Calculate auto threshold**, if standards have been used during the experiment.

Cq calculation	
Threshold	0,01
Threshold start cycle	1
Calculate auto threshold	

The automatic threshold function scans a specified region of the standard plot to find a threshold setting that delivers optimal estimates of given concentrations. Click **Calculate auto threshold** and define the scanned region by entering an **Upper** (1) and **Lower** (2) bound.

Calculate auto threshold	
Select the upper and lower bounds to be scanned for optimum threshold level	
Upper bound: 0,07 1	
Lower bound: 0 2	
Ok Cancel	

Upon clicking **OK**, the Q-Rex Software scans the threshold level range to obtain the best fit curve through the samples defined as standards, (i.e., the R-value that most closely approximates 1.0). A new threshold is calculated and displayed in the **Analysis** parameters and **fluorescence plots**.

With the Q-Rex Absolute Quantification HID Plug-in version 1.0 it is possible to reuse standard curves from other experiments. This way concentrations can be calculated even if no standards have been used in the run. Detailed information on how to import or export standard curves can be found in the "Reuse of standard curves" chapter.

2.3.3.2 Reuse of standard curves

To import or export standard curves for each target, expand the **Standard Curve** section in the **Analysis** tab of the **Drawer**.

Import standard curves

If no standards have been used in the current experiment, a standard curve can be imported.

1. To import a standard curve from another experiment click on **Import**... to open the **Import Standard Curve** window.

Standard curve	
Import	Export
Imported standard curve:	
	Unload

Note: Standard curves can only be imported if no Standards have been used in the experiment. If the

Import... button appears deactivated and grayed out, go to the **Sample Layout** step and remove all **Standards** from the **Sample type** assignment.

2. Click on the browse button (1) to open a file dialog. In this dialog, you can select already exported standard curve files (*.qesc files) from your system. The curve parameters of the selected file will be shown in detail on the **Import Standard Curve** Screen as read-only fields.

(Impor	t Standard Curve
Standard curve Absolute Quantifica	tion_Green
Curve parameters	
Target Green Curve	Channel Green
R=0.99715;R ² =0.	9943;M=-3.278;B=33.47502
Efficiency 102%	Concentration range
Threshold 0,0568	Left threshold
	2 OK Cancel

Target	Shows the target for which the standard curve was computed.
Channel	Shows the channel of the exported standard curve.
Curve	Displays the standard curve formula including R-value, R ² -value, slope and intercept.
	For further information on the values refer to "View standard curve plot".
Efficiency	Efficiency in percent.
Concentration range	The concentration range of the standards upon the standard curve has been computed.
Threshold	Used threshold during analysis of the target.
Left threshold	Used left threshold during analysis of the target.

3. After confirming the selection with a click on **OK** (2), the standard curve will be imported and will appear in the lower right section of the analysis view. Previously defined threshold and left threshold parameters will be overwritten with the corresponding threshold values from standard curve data. The thresholds will not be adaptable any longer and stand as read-only in the analysis view.

Unload standard curves

To unload the imported standard curve click on **Unload**. The imported standard curve will be removed from the experiment and the threshold will be removed. It can be calculated automatically or set manually again.

Import Expo	rt
Imported standard curve:	
Absolute Quantification_Green	Unload

Export standard curves

To reuse a standard curve in another experiment, it has to be exported first.

1. Click on Export... to open the Save Standard curve dialog.

Standard curve	
Import	Export
Imported standard co	urve:
	Unload

2. Adapt the default file name and location, if required. The standard curve will be saved and made available for being loaded in other experiments.

Note: It is not possible to export an imported standard curve. The **Export**... button is only active if standards have been run and a standard curve was created in the active experiment.

2.3.3.3 Compensating crosstalk

Using two or more acquisition channels in the same experiment can lead to observed crosstalk. Crosstalk occurs when fluorescent dyes and filters have overlapping wavelength ranges and the emission from one channel contributes to the acquisition of another channel.

In the Q-Rex Absolute Quantification HID Plug-in, you can compensate for this signal bleed from one channel into another. **Crosstalk compensation** allows you to remove this signal interference by:

Performing crosstalk compensation

Defining crosstalk compensation settings

Saving compensation factors

Loading compensation factors

Note: Crosstalk compensation cannot be a component of a template. Crosstalk compensation is added after execution and review of an experiment and only if it is required.

2.3.3.3.1 Performing crosstalk compensation

To set up crosstalk compensation, expand the **Crosstalk compensation** section in the **Analysis** tab of the **Drawer**.

Note: Crosstalk compensation cannot be a component of a template. Instead, it is added after execution and review of an experiment and only if it is required.

Analysis	Tube Selector
Target Green	1
Filter d	lata
Norma	lization
🕞 Cq cal	culation
🐨 Crosst	alk compensation
Compension	sate crosstalk
Settings .	Save factors

Click **Settings** to access the <u>crosstalk compensation settings</u> dialog. Define your crosstalk compensation and click **OK**.

Check the **Compensate crosstalk** checkbox to apply your defined crosstalk compensation settings. The compensation appears on the normalized data of the channels which were specified in the **Settings** dialog.

Remove the tick from the checkbox to remove the crosstalk compensation from the normalized data.

Note: Invalid crosstalk compensation settings disable the **Compensate crosstalk** checkbox and the **Settings** button is displayed as invalid.

Click **Save factors** to access the **Save Compensation Factors** dialog. You can save calculated crosstalk compensation factors to the file system and use these again in a different experiment.

2.3.3.3.2 Defining crosstalk compensation settings

Setup the compensation settings for your experiment in the **Define Crosstalk Compensation Settings** dialog.

Select channels to com	ipensate 😈				
Origin	Affected		Crosstalk to c	ompensate	
🔺 🔘 Green	🔺 🔘 Gre				
🛆 🔘 Yellow	🛆 🔾 Yello				
📥 🔘 Orange	📥 🔘 Ora	-			
🔺 🔘 Red	🔺 🔘 Red	1			
		Add compensation			
Compensate crosstalk		factors 😵	es for comper Sample type	Sample name	
Compensate crosstalk all tubes Selected Crosstalk to com	based on d tubes	factors 🔮	-		
Compensate crosstalk	based on d tubes		-		
Compensate crosstalk	based on d tubes		-		
Compensate crosstalk	based on d tubes	Tubes	-		
Compensate crosstalk all tubes oselected Crosstalk to con Crosstalk limit is set automatically obse	based on d tubes npensate	Tubes	-		
Compensate crosstalk all tubes oselected Crosstalk to con Crosstalk limit is set	based on d tubes npensate	Tubes	-		
Compensate crosstalk all tubes oselected Crosstalk to con Crosstalk limit is set automatically obse	based on d tubes npensate	Tubes	-		
Compensate crosstalk all tubes oselected Crosstalk to con Crosstalk limit is set automatically obse	based on d tubes npensate	Tubes	-		

You can load saved crosstalk compensation factors or define new settings. To define new settings:

1. Select the channels requiring crosstalk compensation. The **Select channels to compensate** section lists all channels in the experiment in two columns labeled **Origin** and **Affected**.

Select channels to com	ipensate 🕜	
Origin	Affected	Crosstalk to compensate
🔺 🔘 Green	🔺 🔘 Green	Green bleeding into Yellow
🛆 🔘 Yellow	🛆 🔘 Yellow	
🔺 💿 Orange	🔺 🔘 Orange	
🔺 🔿 Red	🔺 💿 Red	
	Add compensation	

Select the channel causing the crosstalk from the **Origin** list and the channel affected by the crosstalk from the **Affected** list.

2. Add your selection to the Crosstalk to compensate section to the right by clicking Add compensation.

To remove a defined channel compensation, click 🔀 in the row of the defined crosstalk.

Note: Each combination of **Origin** and **Affected** channels can be added only once to the **Crosstalk to compensate** section. You cannot compensate channels with the same wavelength or channels that undergo data acquisition in different cycling steps.

3. Select the method to calculate compensation factors.

Select methods to calculate compensa	Select methods to calculate compensation factors 🔞			es for comper	sation	
Compensate crosstalk based on all tubes Selected tubes			Tube	Sample type	Sample name	A
Crosstalk to compensate	Tubes	A				
A Green bleeding into Yellow	1-22					
Crosstalk limit is set automatically O based on NTCs	Tuber					
Crosstalk to compensate						
Green bleeding into Yellow						
		V.				
						V

The factors for a compensation can be calculated based on all tubes or selected tubes.

- all tubes All tubes with Sample type other than **Not in use** are used for the calculation. This option is preselected by default and is best used in combination with the option to set the crosstalk limit **automatically** for an initial compensation in an experiment.
- selected tubes Only selected tubes are used to calculate compensation factors. You must define at least 1 tube with an expected signal in the **Origin** channel and no expected signal in the **Affected** channel.

This is an advanced option and should be implemented only by experienced users.

To select tubes, click the radio button **selected tubes** and a table of tubes in the experiment appears to the right.

				Tube	Sample type	Sample name	
Compensate crosstalk based on				1	Sample	sample 1	
🔾 all tubes 💿 selected tubes 🛕			Ē	2	Sample	sample 1	
Crosstalk to compensate	Tubes			3	Sample	sample 2	
A Green bleeding into Yellow				4	Sample	sample 2	
				5	Sample	sample 3	
		-		6	Sample	sample 3	
				7	Sample	sample 4	
Crosstalk limit is set				8	Sample	sample 4	
💿 automatically 🔘 based on NTCs				9	Sample	sample 5	
Crosstalk to compensate	Tubes			10	Sample	sample 5	
A Green bleeding into Yellow				11	Sample	sample 6	
				12	Sample	sample 6	
				13	NTC	multiplex NTC	
				14	NTC	multiplex NTC	

Check the checkbox of each tube to be used in the calculation. Each tube must have an expected signal in the **Origin** channel and no expected signal in the **Affected** channel. 4. Select the method to set the limit for the crosstalk compensation; that is, how far should the signals of affected tubes be compensated.

In the **Crosstalk limit is set** section, choose between setting the limit automatically or based on specific nontemplate controls (NTCs).

- automatically All tubes with Sample type other than **Not in use** are used to automatically calculate a compensation limit. This option is preselected by default and is best used in combination with the option to compensate crosstalk based on all tubes for an initial compensation in an experiment.
- based on NTCs Signals are compensated until the curve reaches that of crosstalk-free NTCs. This option is available if you choose to compensate crosstalk based on selected samples. Fluorescence signals are compensated until the fluorescence of the specified NTCs is reached.

This is an advanced option and should be used only by experienced users.

To select tubes for this option, click the radio button **based on NTCs** and a list of tubes in the experiment appears to the right.

	ments exceptelly based on		1		Tube	Sample type	Sample name	
	ensate crosstalk based on				1	Sample	sample 1	
🔵 all f	tubes 💿 selected tubes				2	Sample	sample 1	
	Crosstalk to compensate	Tubes			3	Sample	sample 2	
	Green bleeding into Yellow	1-2			4	Sample	sample 2	
					5	Sample	sample 3	
					6	Sample	sample 3	
					7	Sample	sample 4	
Crosst	alk limit is set				8	Sample	sample 4	
🔾 aut	omatically 💿 based on NTCs 🛛 🖊	<u>N</u>			9	Sample	sample 5	
	Crosstalk to compensate	Tubes			10	Sample	sample 5	
	Green bleeding into Yellow				11	Sample	sample 6	
					12	Sample	sample 6	
	_				12	Sample	adiripio o	
				H	12	NTC	multiplex NTC	

In the table, check the checkbox of each tube to be used to set the limit. Each tube must have acquisitions in the **Origin** and **Affected** channels, but no template in either (NTC) and therefore no amplification signals.

Note: The options to compensate crosstalk based on all tubes and set the crosstalk limit **based on NTCs** cannot be used together.

5. Once you have defined the settings, click OK to return to the analysis to apply them.

Alternatively, click Cancel to discard all entries made and exit the dialog.

2.3.3.3.3 Saving compensation factors

You can save calculated compensation factors to use them again in a different experiment. We recommend saving compensation factors only if they will be used for experiments run on the same instrument and with the same experimental setup.

To save your compensation factors:

1. Open the **Save Compensation Factors** dialog by clicking **Save factors** in **Crosstalk compensation** section of the **Analysis** tab of the **Drawer** (see <u>Performing crosstalk compensation</u>).

Save (Compensation Factors			
Name E.coli compensatio	on factors			
Names in use				
888				
8880				
acac				
dwefd		0		
Matrix 66				
Details				
Saved on:	2/18/2016 2:53:26 PM		Available compensations	A
Saved by:	admin		Green bleeding into Yellow	
Calculated using experiment:	e.coli initial run			
Cycler name / serial name:	s/n COM9 / 0214731			
				V
			Save	Cancel

Available compensations	Lists all channels chosen to be compensated.
Details	Summarizes the experiment from which the compensation factors were calculated.
Names in use	Displays file names of compensation factors already saved and used on your system.

2. Click the **Name** field and enter a name for the compensation factors to be saved. If a 'saved factors' file already exist with the same name, a warning message is displayed.

3. Click **Save** to save the compensation factors and exit the dialog.

2.3.3.3.4 Loading compensation factors

To load compensation factors saved to your system, click **Load factors** in the **Define Crosstalk Compensation Settings** dialog.

Select channels to com	pensate 🕜	
Origin	Affected	Crosstalk to compensate
🔺 🔘 Green	🔺 🔘 Green	
🛆 🔘 Yellow	스 🔾 Yellow	
📥 🔘 Orange	🔔 🔘 Orange	
🔺 🔘 Red	A 🔘 Red	
	Add compensation	
Select methods to calcu	late compensation factors 🔞	Select tubes for compensation
Compensate crosstalk	based on	Select tubes for compensation Tube Sample type Sample name
Compensate crosstalk	based on	-
Compensate crosstalk	based on	-
Compensate crosstalk	based on I tubes	-
Compensate crosstalk	based on I tubes	-
Compensate crosstalk	based on I tubes opensate Tubes A	-
Compensate crosstalk I all tubes o selected Crosstalk to com Crosstalk limit is set	based on I tubes opensate Tubes	-
Compensate crosstalk	based on I tubes npensate Tubes	-
Compensate crosstalk l all tubes Selected Crosstalk to com Crosstalk limit is set automatically Sas	based on I tubes npensate Tubes	-
Compensate crosstalk l all tubes Selected Crosstalk to com Crosstalk limit is set automatically Sas	based on I tubes npensate Tubes	-

The Load/Manage Compensation Factors dialog that appears lists all previously saved compensation factors. In this dialog, you can load compensation factors or remove unwanted compensation factor files from your system.

Note: We recommend using saved compensation factors only in experiments run on the same instrument and with the same experimental setup.

🖉 Load/Mana	age Compensation Fa	actors		
Compensation factors e.coli compensation factors experiment 1_instrument 1_ experiment 2_instrument 1_ legionella sppinstrument 2 legionella compensation fa salmonella spp_instrument	compensation factors compensation factors 2_compensation factors ctors			
	126/2016 1:09:30 PM dmin		Available compensations Green bleeding into Yellow	3
Calculated using experiment:	xperiment 2_initial run		Orange bleeding into Red	
			Loa	d Cancel

To remove compensation factor files, find the file in the **Compensation factors** field (1), click \times and confirm the deletion of the compensation factors from your system.

To load saved compensation factors:

- 1. Select the file with the compensation factors you want to load from the Compensation factors field (1).
- 2. Check the information provided in the **Details** field (2) to make sure you have chosen the correct compensation factors.

3. From the **Available compensations** table (**3**), select at least one compensation in the file to be loaded. Compensations which are not applicable to your experiment appear grayed out and cannot be selected.

4. Click **Load** and return to the **Define Crosstalk Compensation Settings** dialog. Details about the loaded compensation factors are displayed in this dialog.

5. Click OK to confirm your selection and return to the analysis.

Alternatively, you can load compensation factors from another file by clicking **Load** factors or unload the compensation factors by clicking **Unload** factors. All settings return to default and you can <u>define new</u> <u>crosstalk compensation settings</u>.

Click **Cancel** to return to the analysis step without saving defined compensation settings.

Select channels to	compensate 😮		_
Origin Green OYellow	Affected Green Yellow	Crosstalk to compensate	
Compensation fact	Add compensation		
Saved on:	4/26/2016 1:09:30 PM	Compensations	
Saved by:	admin	Green bleeding into Yellow	
Calculated using experiment:	experiment 2_initial run		
Cycler name / Serial number:	s/n COM4 / 0214314		

2.3.3.4 Copy analysis parameter

In **Absolute Quantification HID** analysis, parameters from one target can be copied to other targets using the **Copy settings to (2)** function of the **Analysis** tab in the **Drawer**.

To copy analysis parameters to one or more targets:

1. Define analysis parameters for the active target.

The active target for the analysis is visible at the top of the **Drawer** (1) and its editable analysis parameters are listed below. This is also the target selected in the active fluorescence plot.

2. The drop down menu under **Copy settings to (2)** lists all targets available except for the active target. Use the drop down menu to indicate the destination targets for the parameters.

	Analysis Tube Selector	₽						
()Target Green	À						
	Filter data							
	Normalization							
	Cq calculation							
	Threshold 0,022							
	Threshold start cycle							
	Calculate auto threshold							
	Melt peak analysis							
	Standard curve							
	Crosstalk compensation							
2	Copy settings to							
Ĭ	Yellow, Orange V OK							
	Yellow							
	Orange							
	🔲 📕 Red							

3. Click **OK**. Filter data, normalization settings, thresholds, and melt settings (if available) from the active target are copied to all selected destination targets.

Note: If multiple targets are selected in the fluorescence plot, the **Target** field at the top of the **Drawer** remains empty, the analysis parameters cannot be edited, and the **Copy settings to** function is disabled.

2.3.4 View results

Once all required analysis parameters are defined, the **Results Table** in the lower half of the **Analysis** screen displays the results in 3 different views. Click the tabs at the top of the **Results Table** to access each view.

Tu	bes	Samples Grou		ups												
						Green										
~	Tube		Style	Sample	e name	Sample g	roups	Sample type	Target	Cq	Take-off	Eff.	Given conc.	Conc.	Conc. unit	Tm °C
~	1			Standa	rd 1			Standard	Green	22,72	22,60	1,78	2000	1904,84	copies/µl	83,3
~	2			Standa	rd 1			Standard	Green	22,69	22,60	1,80	2000	1952,99	copies/µl	83,3
~	3			Standa	rd 1			Standard	Green	22,73	22,70	1,79	2000	1891	copies/µl	83,3
~	4			Standa	rd 1			Standard	Green	22,62	22,70	1,79	2000	2042,15	copies/µl	83,3
~	5			Standa	rd 2			Standard	Green	23,59	23,70	1,78	1000	1034,19	copies/µl	83,3
~	6			Standa	rd 2			Standard	Green	23,68	23,60	1,78	1000	974,2	copies/µl	83,3
~	7			Standa	rd 2			Standard	Green	23,63	23,70	1,77	1000	1009,62	copies/µl	83,3
~	8			Standa	rd 2			Standard	Green	23,64	23,70	1,77	1000	1000,82	copies/µl	83,3
~	9			Standa	ard 3			Standard	Green	24,60	24,60	1,75	500	508,6	copies/µl	83,3

- **Tubes:** This view shows results for each tube in the experiment, with all acquisitions listed next to each other in a single row (see <u>Tubes View</u>).
- **Samples:** Reports results for all replicates of a sample. Typical results, such as Cq values, are reported as the arithmetic mean and the standard deviation of all sample replicates (see <u>Samples View</u>).
- Groups: Similar to the Samples view, the Groups view shows aggregated results. In this case, results are reported for sample groups (see <u>Groups View</u>).

2.3.4.1 Tubes View

.

The Tubes View of the Results Table shows results for each tube, laid out in a row.

.

Tu	bes		Samples Gro		ups											
	·					Green (1) (2) (3)										
~	Tube		Style	Sample	e name	Sample	groups	Sample type	Target	Cq	Take-off	Eff.	Given conc.	Conc.	Conc. unit	Tm °C
~	1			Standa	ard 1			Standard	Green	22,72	22,60	1,78	2000	1904,84	copies/µl	83,3
~	2			Standa	ard 1			Standard	Green	22,69	22,60	1,80	2000	1952,99	copies/µl	83,3
~	3			Standa	ard 1			Standard	Green	22,73	22,70	1,79	2000	1891	copies/µl	83,3
~	4			Standa	ard 1			Standard	Green	22,62	22,70	1,79	2000	2042,15	copies/µl	83,3
~	5			Standa	ard 2			Standard	Green	23,59	23,70	1,78	1000	1034,19	copies/µl	83,3
~	6			Standa	ard 2			Standard	Green	23,68	23,60	1,78	1000	974,2	copies/µl	83,3
~	7			Standa	ard 2			Standard	Green	23,63	23,70	1,77	1000	1009,62	copies/µl	83,3
~	8			Standa	ard 2			Standard	Green	23,64	23,70	1,77	1000	1000,82	copies/µl	83,3
~	9			Standa	ard 3			Standard	Green	24,60	24,60	1,75	500	508,6	copies/µl	83,3

Data are organized into the following columns:

Column Label	Description
-	The first column contains a check box to select or deselect a tube for analysis. The selection is synchronized with data in the Tube Selector and the fluorescence plots (see the <i>Q-Rex Software User Manual</i> for details).
Tube	Indicates the tube position in the rotor.
-	The third column displays the color used for the corresponding curve in a fluorescence plot.
Style	Indicates the line style used for the corresponding curve in a fluorescence plot.
Sample name	Lists the sample name.
Sample groups	Optional: If you defined sample groups, this column displays all groups to which a sample is assigned.
Sample type	Lists the assigned sample type (Sample, Standard, PC, NTC, NC, Not in use).
Target	Lists the target assigned to the tube for the specific acquisition.
Cq	Shows the Cq value calculated for the tube.
Takeoff	Indicates the take-off point, i.e., the cycle where the run transitioned into the exponential phase.
Eff.	Displays the reaction efficiency of the tube.

Tm°C Optional: If the experiment contains melt data, this column displays the melting point of each sample.

With the Q-Rex Absolute Quantification HID Plug-in, 3 additional columns are displayed:

Column Label	Description
Given conc. (1)	Displays the concentration defined in the Sample Layout step.
Conc. (2)	Lists the calculated concentration value.
Conc. unit (3)	Displays the units for concentration values, as defined in the Sample Layout step.

2.3.4.2 Samples View

The **Samples View** of the **Results Table** shows results for technical replicates, laid out in a row. Results from tubes with the same name, acquisitions and targets are aggregated as a technical replicate.

Tu	bes San	nples Gr	oups							
				Gre	en		1	2	3	4
~	Sample name	Sample groups	Sample type	Target	Sample Cq	Cq SD	Given conc.	Sample conc.	Conc. SD	Conc. unit
~	Standard 1		Standard	Green	22,69	0,05	2000	1947,74	68,31	copies/µl
\checkmark	Standard 2		Standard	Green	23,63	0,04	1000	1004,71	24,76	copies/µl
\checkmark	Standard 3		Standard	Green	24,52	0,07	500	538,52	27,81	copies/µl
\checkmark	Standard 4		Standard	Green	25,69	0,11	250	237,8	18,16	copies/µl
~	Standard 5		Standard	Green	26,6	0,17	125	125,85	14,51	copies/µl
\checkmark	Unknown 1	Group 1	Sample	Green	24,53	0,14	0	535,61	53,37	copies/µl
~	Unknown 2	Group 2	Sample	Green	25,45	0,15	0	281,64	30,84	copies/µl
\checkmark	NTC		NTC	Green			0			copies/µl

Data are organized into the following columns:

Column Label	Description
-	The first column contains a check box to select or deselect a sample with its technical replicates. The selection is synchronized with data in the Tube Selector and the fluorescence plots (see the <i>Q-Rex Software User Manual</i> for details).
Sample name	Lists the sample name.
Sample groups	Optional: If you defined sample groups, this column displays all groups to which a sample is assigned (see the <i>Q-Rex Software User Manual</i> for details).
Sample type	Lists the assigned sample type (Sample, Standard, PC, NTC or NC).
Target	Displays the target assigned to replicate tubes for the specific acquisition (see the <i>Q-Rex Software User Manual</i> for details).
Sample Cq	Lists the arithmetic mean of the Cq values of tubes with the same sample name and target.
Cq SD	Provides the standard deviation of the listed Cq values of tubes with the same sample name and target.

With the Q-Rex Absolute Quantification HID Plug-in, 4 additional columns are displayed:

Column Label	Description
Given conc. (1)	Displays the concentration defined in the Sample Layout step.
Sample conc. (2)	Provides the arithmetic mean of the calculated concentration values of tubes with the same sample name and target.
Conc. SD (3)	Lists the standard deviation of the calculated concentration values of tubes with the same sample name and target.
Conc. unit (4)	Shows the units for concentration values, as defined in the Sample Layout step.

Note: A technical replicate will have multiple rows, if tubes of the sample have multiple target assignments.

Note: If a melt phase is part of the experiment, melt peak temperatures are only displayed in the <u>Tubes</u> <u>View</u>.

2.3.4.3 Groups View

The **Groups View** of the **Results Table** shows results for each defined sample group and acquisition, laid out in a row. Results are calculated from all tubes assigned to the same sample group.

Tubes	Replicates	Groups					
	[Green			(1)	(2)	3
Sample groups		Target	Cq mean	Cq SD	Conc. mean	Conc. SD	Conc. unit
Group 1		Green	21.38	0.07	517.2	26.2	None
Group 2		Green	22.30	0.09	267.7	18	None

Data are organized into the following columns:

Column Label	Description
Sample groups	Indicates the groups defined for the samples of the experiment (see the Q-Rex Software User Manual for details).
Target	Lists the target assigned to the sample group for the specific acquisition (see the <i>Q-Rex Software User Manual</i> for details).
Cq mean	Displays the arithmetic mean of the Cq values of all samples with the same sample group and target assignment.
Cq SD	Provides the standard deviation of the listed Cq values of all samples with the same sample group and target assignment.

With the Q-Rex Absolute Quantification HID Plug-in, 3 additional columns are displayed:

Column Label	Description
Conc. mean (1)	Displays the arithmetic mean of the calculated concentration values of all samples with the same sample group and target assignment.
Conc. SD (2)	Lists the standard deviation of the calculated concentration values of all samples with the same sample group and target assignment.
Conc. unit (3)	Shows the units for concentration values, as defined in the Sample Layout step.

Note: A sample group will have multiple rows, if samples of the group have multiple target assignments.

2.4 Report and export results

To create a report or to export results, see "Reports and exports" in the Q-Rex Software User Manual.

2.5 Troubleshooting

For information about error messages in the Q-Rex Software and troubleshooting, see "Troubleshooting" in the Q-Rex Software User Manual.

The Q-Rex Absolute Quantification HID Plug-in displays error messages and warnings when unexpected events or behaviors occur during use.

The following list includes the most common error messages or warnings that can occur while using the Q-Rex Absolute Quantification HID Plug-in and troubleshooting suggestions. These are specific to the Q-Rex Absolute Quantification HID Plug-in. For information about general error messages of the Q-Rex Software and troubleshooting, see "Troubleshooting" in the Q-Rex Software User Manual.

When contacting QIAGEN Technical Service for help, make sure to provide the Service Specialist:

- Steps and events leading to the error message.
- The Message ID. This number uniquely identifies the source of an error or warning and helps QIAGEN Technical Services to resolve the problem.

Error messages:

Message ID	Error text	Comments and suggestions
201857007	Minimal number of standards required.	The auto-find threshold feature requires that you have defined at least 2 selected standards.
		To use the automatic threshold calculation, at least two standards for the active target must be

selected.

Warning messages:

Message ID	Warning text	Comments and suggestions
20000003	The same name is already saved for the compensation factors. Would you like to overwrite the existing file?	Use a different name to save the compensation factors. Otherwise, the existing file will be overwritten.
2000002	The selected compensation factors will be removed from your system and will no longer be available.	By confirming this warning, the compensation factors will be removed completely. Do not delete compensation factors that could be needed in the future.

2.6 Glossary

HID

For definitions of general terms used in the Q-Rex Software, refer to the "Glossary" in the Q-Rex Software User Manual.

Human identification is a field of investigation in forensic cases or paternity testing.

Appendices

3 Appendices

3.1 Appendix A – Limited License Agreement

QIAGEN's Q-Rex Absolute Quantification HID Plug-in Software License Agreement

TERMS AND CONDITIONS of an LEGAL AGREEMENT (the "**Agreement**") by and between QIAGEN GmbH, QIAGEN Strasse 1, D-40724 Hilden, Germany, ("**QIAGEN**") and you (either an individual or a legal entity), the licensee of the software (hereinafter referred to as "**SOFTWARE**")

By installing, having installed and using the SOFTWARE you are agreeing to be bound by the terms of this Agreement. If you do not agree to the terms of this Agreement, promptly return the software package(s) and the accompanying items (including written materials) to the place you obtained them for a full refund of the costs of the SOFTWARE.

1. GRANT OF LICENSE

Scope. Subject to the terms and conditions of this agreement, QIAGEN grants you a worldwide, perpetual, non-exclusive, and nontransferable license to use the SOFTWARE solely for your internal business purposes.

You shall not:

- modify or alter the whole or any part of the SOFTWARE nor merge any part of it with another software nor separate any components of the SOFTWARE from the SOFTWARE nor, save to the extent and in the circumstances permitted by law, create derivative works from, or, reverse engineer, decompile, disassemble or otherwise derive source code from the SOFTWARE or attempt to do any of these things
- copy the SOFTWARE (except as provided above)
- assign rent, transfer, sell, disclose, deal in, make available or grant any rights in the Software Product in any form to any person without the prior written consent of QIAGEN;
- remove alter, obscure, interfere with or add to any proprietary notices, labels, trademarks, names or marks on, annexed to, or contained within the SOFTWARE;
- use the SOFTWARE in any manner that infringes the intellectual property or other rights of QIAGEN or any other party; or
- use the SOFTWARE to provide on-line or other database services to any other person.

Single-Computer Use. This Agreement permits you to use one copy of the SOFTWARE on a single computer.

Trial versions. Trial versions of the SOFTWARE may expire after a period of 30 (thirty) days without prior notice.

Open Software/Third Party Software. This Agreement does not apply to any other software components identified as subject to an open source license in the relevant notice, license and/or copyright files included with the programs (collectively the "Open Software") Furthermore, this Agreement does not apply to any other software for which QIAGEN is only granted a derived right to use ("Third Party Software"). Open Software and Third Party Software may be supplied in the same electronic file transmission as the SOFTWARE, but are separate and distinct programs. The SOFTWARE is not subject to the GPL or any other open source license.

If and insofar QIAGEN provides Third Party Software, the license terms for such Third Party Software shall additionally apply and prevail. If Open Software is provided, the license terms for such Open Software shall additionally apply and prevail. QIAGEN shall provide you with the corresponding source code of relevant Open Software, if the respective license terms of the Open Software include such obligation. QIAGEN shall inform if the SOFTWARE contains Third Party Software and/or Open Software and make available the corresponding license terms on request.

2. UPGRADES

If the SOFTWARE is an upgrade from a previous version, you are granted a single license to both copies, and you may not separately transfer the prior version(s) except as a one-time permanent transfer to another user of the latest upgrade and all prior versions as allowed in Section 4 below.

3. COPYRIGHT

The SOFTWARE, including any images, and text incorporated in the SOFTWARE, is copyrighted and is protected by German copyright laws and international treaty provisions. You may not copy any of the printed materials accompanying the SOFTWARE.

4. OTHER RESTRICTIONS

You may not rent or lease the SOFTWARE, but you may transfer the SOFTWARE and accompanying written materials on a permanent basis to another end user provided you delete the setup files from your computer, and the recipient agrees to the terms of this Agreement. You may not reverse engineer, decompile, or disassemble the SOFTWARE. Any transfer of the SOFTWARE must include the most recent upgrade and all prior versions.

5. LIMITED WARRANTY

QIAGEN warrants that the SOFTWARE will perform substantially in accordance with the accompanying printed materials for a period of ninety (90) days from the date of receipt. Any implied warranties on the SOFTWARE are limited to ninety (90) days. Some states/jurisdictions do not allow limitations on duration of an implied warranty, so the above limitation may not apply to you.

6. CUSTOMER REMEDIES

QIAGEN's entire liability and your exclusive remedy shall be, at QIAGEN's option, either (a) return of the price paid or (b) repair or replacement of the SOFTWARE that does not meet QIAGEN's Limited Warranty and that is returned to QIAGEN with a copy of your receipt. This Limited Warranty is void if failure of SOFTWARE has resulted from accident, abuse or misapplication. Any replacement of SOFTWARE will be warranted for the remainder of the original warranty period or thirty (30) days, whichever is longer.

7. LIMITED LIABILITY

In no event shall QIAGEN or its suppliers be liable for any damages whatsoever (including, without limitation, damages for loss of business profits, business interruption, loss of business information, or other pecuniary loss, unforeseeable damage, lack of commercial success, indirect damage or consequential damage - in particular financial damage – or for damage resulting from third party claims) arising out of the use or inability to use the SOFTWARE, even if QIAGEN has been advised of the possibility of such damages.

The above restrictions of liability shall not apply in cases of personal injury or any damage resulting from willful acts or gross negligence or for any liability based on the Product Liability Act (Produkthaftungsgesetz), guarantees or other mandatory provisions of law.

The above limitation shall apply accordingly in case of:

- delay,

- compensation due to defect,
- compensation for wasted expenses.

8. NO SUPPORT

Nothing in this agreement shall obligate QIAGEN to provide any support for the SOFTWARE. QIAGEN may, but shall be under no obligation to, correct any defects in the SOFTWARE and/or provide updates to licensees of the SOFTWARE. You shall make reasonable efforts to promptly report to QIAGEN any defects you find in the SOFTWARE, as an aid to creating improved revisions of the SOFTWARE.

Any provision of support by QIAGEN for the SOFTWARE (including network installation support), if any, shall solely be governed by an according separate support agreement.

9. TERMINATION

If you fail to comply with the terms and conditions of this Agreement, QIAGEN may terminate this Agreement and your right and license to use the SOFTWARE. You may terminate this Agreement at any time by notifying QIAGEN. Upon the termination of this Agreement, you must delete the SOFTWARE from your computer(s) and archives.

YOU AGREE THAT UPON TERMINATION OF THIS AGREEMENT FOR ANY REASON, QIAGEN MAY TAKE ACTIONS SO THAT THE SOFTWARE NO LONGER OPERATES.

10. GOVERNING LAW, VENUE

This Agreement shall be construed and interpreted in accordance with the laws of Germany, without giving effect to conflict of laws provisions. The application of the provisions of the UN Sales Convention is excluded. Notwithstanding any other provision under this Agreement, the parties to this Agreement submit to the exclusive jurisdiction of the Dusseldorf courts.

Third Party Software License Information

This Product contains or makes use of the following third party components: Log4Net, Stateless (Apache License v.2.0), DotNetZip, Plossum (zip/libpng license), Mog (BSD license) NHibernate (GNU Lesser General Public License).

3.2 Appendix B – Liability clause

QIAGEN shall be released from all obligations under its warranty in the event repairs or modifications are made by persons other than its own personnel, except in cases where the Company has given its written consent to perform such repairs or modifications. All materials replaced under this warranty will be warranted only for the duration of the original warranty period, and in no case beyond the original expiration date of original warranty unless authorized in writing by an officer of the Company. Read-out devices, interfacing devices and associated software will be warranted only for the period offered by the original manufacturer of these products. Representations and warranties made by any person, including representatives of QIAGEN, which are inconsistent or in conflict with the conditions in this warranty shall not be binding upon the Company unless produced in writing and approved by an officer of QIAGEN.

3.3 Copyright information

Trademarks

QIAGEN[®], Sample to Insight[®], Rotor-Gene[®] (QIAGEN Group). Registered names, trademarks, etc. used in this document, even when not specifically marked as such, are not to be considered unprotected by law.

© 2017 QIAGEN, all rights reserved.

1105521 07/2017 HB-2317-001

www.qiagen.com

Technical Support

www.support.qiagen.com