artus® EBV QS-RGQ Kit Handbook Version 1 Quantitative in vitro diagnostics For use with QIAsymphony® SP/AS and Rotor-Gene® Q Instruments 4501363 QIAGEN GmbH, QIAGEN Strasse 1, D-40724 Hilden **R2** MAT 1060927EN ### **QIAGEN Sample and Assay Technologies** QIAGEN is the leading provider of innovative sample and assay technologies, enabling the isolation and detection of contents of any biological sample. Our advanced, high-quality products and services ensure success from sample to result. #### **QIAGEN** sets standards in: - Purification of DNA, RNA, and proteins - Nucleic acid and protein assays - microRNA research and RNAi - Automation of sample and assay technologies Our mission is to enable you to achieve outstanding success and breakthroughs. For more information, visit www.qiagen.com. ### **Contents** | Kit Contents | 5 | |--|----| | Symbols | 5 | | Storage | 6 | | Intended Use | 6 | | Product Use Limitations | 6 | | Quality Control | 7 | | Technical Assistance | 7 | | Safety Information | 7 | | Introduction | 8 | | Principle | 8 | | Pathogen information | 8 | | Performance characteristics | 9 | | Workflow | 14 | | Equipment and Reagents to Be Supplied by User | 19 | | Important Notes | 21 | | General precautions | 21 | | Specimen collection, storage, and transport | 21 | | Getting started on the QIAsymphony SP/AS instruments | 23 | | Preparation of sample material | 26 | | Preparing carrier RNA (CARRIER)—Buffer AVE (AVE) mixtures for plasma samples | 26 | | Using an internal control | 26 | | Assay Control Sets and Assay Parameter Sets | 28 | | Multi-assay runs | 28 | | Yields of nucleic acids | 29 | | Storing nucleic acids | 29 | | Setting the threshold for the PCR analysis | 29 | | Quantitation | 29 | | Protocols | | | ■ DNA Isolation on the QIAsymphony SP | 31 | | ■ Assay Setup on the QIAsymphony AS | 39 | | | | | ■ PCR and Data Analysis on the Rotor-Gene Q | 45 | |---|----| | Troubleshooting Guide | 56 | | References | 61 | | Ordering Information | 62 | ### **Kit Contents** | artus EBV QS-RGQ Kit
Catalog no. | | | (24)
4501363 | |-------------------------------------|--|----|-----------------| | Numbe | er of reactions | | 24 | | Blue | EBV RG Master | | 3 x 360 μl | | Red | EBV RG QS 1* (5 x 10 ⁴ copies/μl) | QS | $200~\mu$ l | | Red | EBV RG QS 2^* (5 x 10^3 copies/ μ l) | QS | $200~\mu$ l | | Red | EBV RG QS 3^* (5 x 10^2 copies/ μ l) | QS | $200~\mu$ l | | Red | EBV RG QS 4* (5 x 10 ¹ copies/μl) | QS | $200~\mu$ l | | Green | EBV RG IC [†] | IC | $1000~\mu$ l | | White | Water (PCR grade) | | 1000 μ l | | | Handbook | HB | 1 | ^{*} Quantitation standard. ## **Symbols** | \ <u>\\</u> | Cantains remarks sufficient for ANN tools | |-----------------|--| | <n> <n></n></n> | Contains reagents sufficient for <n> tests</n> | | \square | Use by | | IVD | In vitro diagnostic medical device | | REF | Catalog number | | LOT | Lot number | | MAT | Material number | | COMP | Components | | CONT | Contains | [†] Internal control. | NUM | Number | |----------|------------------------------| | | Temperature limitations | | | Legal manufacturer | | <u>i</u> | Consult instructions for use | | \odot | Important note | ### Storage The components of the artus EBV QS-RGQ Kit should be stored at -20° C and are stable until the expiration date stated on the label. Repeated thawing and freezing (>2 x) should be avoided, as this may reduce assay performance. #### Intended Use The artus EBV QS-RGQ Kit is an in vitro nucleic acid amplification test for the quantitation of Epstein-Barr virus (EBV) DNA. This diagnostic test kit utilizes the polymerase chain reaction (PCR) and is configured for use with the QIAsymphony SP/AS and Rotor-Gene Q instruments. The artus EBV QS-RGQ Kit is intended for use in conjunction with clinical presentation and other laboratory markers for disease prognosis. ### **Product Use Limitations** All reagents may exclusively be used in in vitro diagnostics. The product is to be used by personnel specially instructed and trained in the in vitro diagnostics procedures (EN375) only. Strict compliance with the user manual is required for optimal PCR results. Attention should be paid to expiration dates printed on the box and labels of all components. Do not use expired components. Although rare, mutations within the highly conserved regions of the viral genome covered by the kit's primers and/or probe may result in underquantitation or failure to detect the presence of the virus in these cases. Validity and performance of the assay design are revised at regular intervals. ### **Quality Control** In accordance with QIAGEN's ISO-certified Quality Management System, each lot of artus EBV QS-RGQ Kit is tested against predetermined specifications to ensure consistent product quality. ### **Technical Assistance** At QIAGEN, we pride ourselves on the quality and availability of our technical support. Our Technical Service Departments are staffed by experienced scientists with extensive practical and theoretical expertise in sample and assay technologies and the use of QIAGEN products. If you have any questions or experience any difficulties regarding the *artus* EBV QS-RGQ Kit or QIAGEN products in general, please do not hesitate to contact us. QIAGEN customers are a major source of information regarding advanced or specialized uses of our products. This information is helpful to other scientists as well as to the researchers at QIAGEN. We therefore encourage you to contact us if you have any suggestions about product performance or new applications and techniques. For technical assistance and more information, please see our Technical Support Center at www.qiagen.com/Support or call one of the QIAGEN Technical Service Departments or local distributors (see back cover or visit www.qiagen.com). ### **Safety Information** When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, please consult the appropriate material safety data sheets (MSDSs). These are available online in convenient and compact PDF format at www.qiagen.com/support/MSDS.aspx where you can find, view, and print the MSDS for each QIAGEN kit and kit component. For safety information for the QIAsymphony DSP Virus/Pathogen Midi Kit, see the QIAsymphony DSP Virus/Pathogen Handbook. For safety information for the QIAsymphony DNA Mini Kit, see the QIAsymphony DNA Handbook. For safety information regarding instruments, see the relevant instrument user manual. Discard sample and assay waste according to your local safety regulations. #### 24-hour emergency information Emergency medical information in English, French, and German can be obtained 24 hours a day from: Poison Information Center Mainz, Germany Tel: +49-6131-19240 #### Introduction The artus EBV QS-RGQ Kit constitutes a ready-to-use system for the detection of EBV DNA using polymerase chain reaction (PCR) on Rotor-Gene Q Instruments with sample preparation and assay setup using the QIAsymphony SP/AS instruments. The EBV RG Master contains reagents and enzymes for the specific amplification of a 97 bp region of the EBV genome, and for the direct detection of the specific amplicon in fluorescence channel Cycling Green of the Rotor Gene Q. In addition, the *artus* EBV QS-RGQ Kit contains a second heterologous amplification system to identify possible PCR inhibition. This is detected as an internal control (IC) in fluorescence channel Cycling Yellow of the Rotor-Gene Q. The detection limit of the analytical EBV PCR is not reduced. External positive controls (EBV RG QS 1–4) are supplied, which allow the determination of the amount of viral DNA. For further information, see "Quantitation", page 29. ### **Principle** Pathogen detection by the polymerase chain reaction (PCR) is based on the amplification of specific regions of the pathogen genome. In real-time PCR the amplified product is detected via fluorescent dyes. These are usually linked to oligonucleotide probes that bind specifically to the amplified product. Monitoring the fluorescence intensities during the PCR run (i.e., in real-time) allows the detection and quantitation of the accumulating product without having to re-open the reaction tubes after the PCR run.* ### **Pathogen information** Transmission of the Epstein-Barr virus (EBV) occurs orally, mainly via contaminated saliva. In general, infection by EBV, especially if contracted in childhood, is asymptomatic. The clinical sign of an acute infection is infectious mononucleosis associated with fever, tiredness and angina, as well as inflammation of the lymph nodes and spleen. In some patients these symptoms reappear chronically. Severe forms of EBV infection can be seen in immunodeficient patients and people with T-cell defects. ^{*} Mackay, I.M. (2004) Real-time PCR in the microbiology laboratory. Clin. Microbiol. Infect. **10**, 190. #### Performance characteristics #### Analytical sensitivity — plasma The analytical detection limit in consideration of the purification (sensitivity limit) was assessed for the *artus* EBV QS-RGQ Kit using EBV-positive clinical specimens in combination with the extraction on the QIAsymphony SP. For plasma, the analytical sensitivity in consideration of the purification of the artus EBV QS-RGQ Kit was determined using a dilution series of EBV virus material from 3160 to nominal 1 EBV copy/ml spiked in clinical plasma specimens. These were subjected to DNA extraction using the QIAsymphony DSP Virus/Pathogen Midi Kit in combination with the Cellfree1000 protocol (extraction
volume: 1 ml, elution volume: $60 \,\mu$ l). Each of the 10 dilutions was analyzed with the artus EBV QS-RGQ Kit on 4 different days in 4 runs with 8 replicates each. The results were determined by a probit analysis. A graphical illustration of the probit analysis is shown in Figure 1. The analytical detection limit in consideration of the purification of the artus EBV QS-RGQ Kit in combination with the Rotor-Gene Q is 157 copies/ml (p = 0.05). This means that there is a 95% probability that 157 copies/ml will be detected. **Figure 1. Probit analysis: plasma, EBV (Rotor-Gene Q).** Analytical sensitivity in consideration of the purification (plasma, using the QlAsymphony DSP Virus/Pathogen Midi Kit) of the *artus* EBV QS-RGQ Kit on the Rotor-Gene Q. #### Specificity — plasma The specificity of the artus EBV QS-RGQ Kit is first and foremost ensured by the selection of the primers and probes, as well as the selection of stringent reaction conditions. The primers and probes were checked for possible homologies to all sequences published in gene banks by sequence comparison analysis. The detectability of all relevant genotypes has thus been ensured. Moreover, the specificity was validated with 30 different EBV negative plasma samples. These did not generate any signals with the EBV specific primers and probes, which are included in the EBV RG Master. A potential cross-reactivity of the *artus* EBV QS-RGQ Kit was tested using the control group listed in Table 1 below. None of the tested pathogens has been reactive. No cross-reactivities appeared with mixed infections. Table 1. Testing the specificity of the kit with potentially cross-reactive pathogens | Control group | EBV
(Cycling Green) | Internal control
(Cycling
Yellow) | |---|------------------------|---| | Human herpesvirus 1
(herpes simplex virus 1) | - | + | | Human herpesvirus 2
(herpes simplex virus 2) | - | + | | Human herpesvirus 3
(varicella-zoster virus) | - | + | | Human herpesvirus 5
(cytomegalovirus) | - | + | | Human T cell leukemia virus 1 | _ | + | | Human T cell leukemia virus 2 | - | + | #### Linear range — plasma The linear range in consideration of the purification of the artus EBV QS-RGQ Kit was determined by analyzing a dilution series of EBV virus material ranging from 1.00×10^7 copies/ml to 1.00×10^2 copies/ml in plasma. The purification was carried out in replicates (n = 4 for concentrations $\geq 1.00 \times 10^6$ copies/ml; n = 8 for concentrations $< 1.00 \times 10^6$ copies/ml) using the QIAsymphony DSP Virus/Pathogen Midi Kit in combination with the Cellfree1000 protocol (extraction volume: 1 ml, elution volume: $60 \, \mu$ l). Each of the samples was analyzed using the artus EBV QS-RGQ Kit. The linear range in consideration of the purification of the artus EBV QS-RGQ Kit has been determined to cover concentrations from 3.16×10^2 copies/ml to 1.00×10^7 copies/ml for plasma (Figure 2). Figure 2. Linear range of the artus EBV QS-RGQ Kit (plasma). Calculation of the linear range. The straight line was determined by a linear regression of the \log_{10} calculated concentrations with the \log_{10} nominal concentrations. The equation of the regression line is included in the figure. #### Robustness — plasma The verification of the robustness allows the determination of the total failure rate of the *artus* EBV QS-RGQ Kit. To verify the robustness, 30 EBV negative samples of plasma were spiked with 500 copies/ml of EBV (approximately threefold concentration of the analytical sensitivity limit). After extraction using the QIAsymphony DSP Virus/Pathogen Midi Kit in combination with the Cellfree1000_DSP protocol (extraction volume: 1 ml, elution volume: 60μ l), these samples were analyzed with the *artus* EBV QS-RGQ Kit. In addition, the robustness of the internal control was assessed by purification and analysis of the 30 spiked plasma samples. Inhibitions were not observed. Thus, the robustness of the *artus* EBV QS-RGQ Kit is $\geq 99\%$. #### Analytical sensitivity — whole blood For whole blood, the analytical sensitivity in consideration of the purification of the artus EBV QS-RGQ Kit was determined using a dilution series of EBV virus material from 3160 to nominal 3.16 EBV copies/ml spiked in human whole blood specimens. These were subjected to DNA extraction using the QIAsymphony DNA Mini Kit in combination with the VirusBlood200 protocol (extraction volume: $200~\mu$ l, elution volume: $60~\mu$ l). Each of the 10 dilutions was analyzed with the artus EBV QS-RGQ Kit on 3 different days in 3 runs with 11 replicates each. The results were determined by a probit analysis. A graphical illustration of the probit analysis is shown in Figure 3. The analytical detection limit in consideration of the purification of the artus EBV QS-RGQ Kit in combination with the Rotor-Gene Q is 288.42 copies/ml (p = 0.05). This means that there is a 95% probability that 288.42 copies/ml will be detected. **Figure 3. Probit analysis: whole blood, EBV (Rotor-Gene Q).** Analytical sensitivity in consideration of the purification (whole blood, using the QIAsymphony DNA Mini Kit) of the *artus* EBV QS-RGQ Kit on the Rotor-Gene Q. #### Specificity — whole blood The specificity of the *artus* EBV QS-RGQ Kit is first and foremost ensured by the selection of the primers and probes, as well as the selection of stringent reaction conditions. The primers and probes were checked for possible homologies to all sequences published in gene banks by sequence comparison analysis. The detectability of all relevant genotypes has thus been ensured. Moreover, the specificity was validated with 30 different EBV negative whole blood samples. These did not generate any signals with the EBV specific primers and probes, which are included in the EBV RG Master. A potential cross-reactivity of the *artus* EBV QS-RGQ Kit was tested using the control group listed in Table 1 (see page 10). None of the tested pathogens has been reactive. No cross-reactivities appeared with mixed infections. #### Linear range — whole blood The linear range in consideration of the purification of the *artus* EBV QS-RGQ Kit was determined by analyzing a dilution series of EBV virus material ranging from 5.00×10^7 copies/ml to 1.00×10^2 copies/ml in whole blood. The purification was carried out in replicates (n = 4 for concentrations $\geq 1.00 \times 10^7$ copies/ml; n = 8 for concentrations $< 1.00 \times 10^7$ copies/ml) using QIAsymphony DNA Mini Kit in combination with the VirusBlood200 protocol (extraction volume: $200 \,\mu$ l, elution volume: $60 \,\mu$ l). Each of the samples was analyzed using the *artus* EBV QS-RGQ Kit. The linear range in consideration of the purification of the *artus* EBV QS-RGQ Kit has been determined to cover concentrations from 1.00×10^3 copies/ml to 5.00×10^7 copies/ml for whole blood (Figure 4). Figure 4. Linear range of the artus EBV QS-RGQ Kit (whole blood). Calculation of the linear range. The straight line was determined by a linear regression of the \log_{10} calculated concentrations with the \log_{10} nominal concentrations. The equation of the regression line is included in the figure. #### Robustness — whole blood The verification of the robustness allows the determination of the total failure rate of the artus EBV QS-RGQ Kit. To verify the robustness, 30 EBV negative whole blood samples were spiked with 750 copies/ml of EBV (approximately threefold concentration of the analytical sensitivity limit). After extraction using the QIAsymphony DNA Mini Kit in combination with the VirusBlood200 protocol (extraction volume: $200 \,\mu$ l, elution volume: $60 \,\mu$ l), these samples were analyzed with the artus EBV QS-RGQ Kit. In addition, the robustness of the internal control was assessed by purification and analysis of the 30 spiked whole blood samples. Inhibitions were not observed. Thus, the robustness of the artus EBV QS-RGQ Kit is \geq 99%. #### Reproducibility Reproducibility data permit a regular performance assessment of the artus EBV QS-RGQ Kit as well as an efficiency comparison with other products. These data are obtained by the participation in established proficiency programs. #### **Cross-contamination** Absence of cross-contamination between samples for the entire workflow was proven by the correct detection of all known positive and negative samples in alternating positions (checkerboard pattern) for a representative *artus* QS-RGQ system. #### Workflow The QIAsymphony RGQ workflow starts with purification of nucleic acids from human plasma or whole blood samples on the QIAsymphony SP instrument. The eluates, containing purified nucleic acids, from the sample preparation procedure are transferred to the QIAsymphony AS module, which then performs assay setup (Figure 5). The assays are then transferred to the Rotor-Gene Q for PCR and data analysis (Figure 6). A workflow overview is given on pages 16–18. For more information, refer to the detailed protocols in this handbook (pages 31, 39, and 45). **Figure 5. Walkaway automation on QIAsymphony SP/AS instruments.** Samples, reagents, and consumables are loaded in the relevant drawers. Sample preparation and assay setup are then fully automated on the QIAsymphony SP/AS instruments. **Figure 6. Transferring the samples to the Rotor-Gene Q.** After sample preparation and assay setup, the reactions are loaded in the 72-Well Rotor of the Rotor-Gene Q for real-time PCR analysis. #### QIAsymphony RGQ workflow overview #### **QIAsymphony SP** Load the "Waste" drawer. ļ Place the elution rack in the "Eluate" drawer. #### Independent operation #### Integrated operation Place the elution rack on slot 1. Place the elution rack with adapter, including the transfer frame on slot 1. Ļ Load the "Reagents and Consumables" drawer. Ť
Load the "Sample" drawer. Ť Define a run/batch using the sample preparation user interface. ŧ Start the protocol. 1 When sample processing is complete either manually remove the elution rack from the "Eluate" drawer (independent operation), or perform direct transfer of the elution rack to the QIAsymphony AS via the transfer module (integrated operation). #### Independent operation #### Integrated operation Remove the eluate slot assignment on the touchscreen, then open the "Eluate" drawer and manually remove the elution rack. Press "Transfer" to transfer the elution rack from the QIAsymphony SP to the QIAsymphony AS. ¥ Download the QIAsymphony SP result file. 1 #### **QIAsymphony AS** Switch to the assay setup user interface in the touchscreen. ŧ Start the assay definition process. #### Independent operation #### Integrated operation Press "New". A message will appear asking whether to use the elution rack as a sample rack. Press "Yes" to confirm. 1 #### Define an assay run. The screens that appear on the touchscreen will guide you step-by-step through the assay definition process. 1 Load the "Eluate and Reagents" and "Assays" drawer with the appropriate samples, reagents, and consumables. For detailed loading information, refer to the "Loading Information" screen. Alternatively, press "Queue" and download the loading information file. ¥ Start the assay run. Ţ After the run is finished, remove the assays. To do this, press "Remove" and then manually remove the assay rack(s) from the "Assays" drawer. Ť Transfer the assay rack(s) to the Rotor-Gene Q. Ť Download the QIAsymphony AS result file and the cycler file. Ť Transfer the cycler file to the Rotor-Gene Q. 1 #### Rotor-Gene Q Select or create a temperature profile. ŧ Click "Start Run". ļ After the run is finished, analyze the results. ŧ #### Maintenance Perform the appropriate maintenance procedures for the QIAsymphony SP/AS and the Rotor-Gene Q according to the instrument user manuals. See Section 8 of the QIAsymphony SP/AS User Manual — General Description and Section 9 of the Rotor-Gene Q User Manual for more details about required daily, regular, and weekly maintenance procedures. ### Equipment and Reagents to Be Supplied by User When working with chemicals, always wear a suitable lab coat, disposable gloves, and protective goggles. For more information, consult the appropriate material safety data sheets (MSDSs), available from the product supplier. - Pipets (adjustable)* and sterile pipet tips with filters - Vortex mixer* - Benchtop centrifuge* with rotor for 2 ml reaction tubes, capable of centrifugation at 6800 x g #### For sample preparation - QlAsymphony SP instrument (cat. no. 9001297)* - QlAsymphony DSP Virus/Pathogen Midi Kit (cat. no. 937055) for plasma samples or QlAsymphony DNA Mini Kit (cat. no. 931236) for whole blood samples - Adapters for the QIAsymphony SP: - Elution Microtube Rack QS (Cooling Adapter, EMT, v2, Qsym, cat. no. 920730) - Tube Insert 3B (Insert, 2.0ml v2, samplecarr. (24), Qsym, cat. no. 9242083) - Consumables for the QIAsymphony SP: - Sample Prep Cartridges, 8-well (cat. no. 997002) - 8-Rod Covers (cat. no. 997004) - Filter-Tips, 1500 μ l (cat. no. 997024) - Filter-Tips, 200 μ l (cat. no. 990332) - Elution Microtubes CL (cat. no. 19588) - Tip disposal bags (cat. no. 9013395) - Micro tubes 2.0 ml Type H or Micro tubes 2.0 ml Type I (Sarstedt, cat. nos. 72.693 and 72.694, www.sarstedt.com) for use with samples and internal controls ^{*} Ensure that instruments have been checked and calibrated according to the manufacturer's recommendations. #### For assay setup - QlAsymphony AS instrument (cat. no. 9001301)* - Adapters and reagent holders for the QIAsymphony AS: - Reagent holder 1 QS (Cooling Adapter, Reagent Holder 1, Qsym, cat. no. 9018090) - Reagent holder 2 QS (Cooling Adapter, Reagent Holder 2, Qsym, cat. no. 9018089) - RG Strip Tubes 72 QS (Cooling Adapter, RG Strip Tubes 72, Qsym, cat. no. 9018092) - Consumables for the QIAsymphony AS: - Strip Tubes and Caps, 0.1 ml (cat. no. 981103) - Tubes, conical, 2 ml, Qsym AS (cat. no. 997102)[†] or Micro tubes 2.0 ml Type I (Sarstedt, cat. no. 72.694.005, <u>www.sarstedt.com</u>) - Tube, conical, 5 ml, Qsym AS (cat. no. 997104)[†] or Tubes with flat base from PP (Sarstedt, cat. no. 60.558.001, <u>www.sarstedt.com</u>) - Reagent Bottles, 30 ml, Qsym AS (cat. no. 997108) - Elution Microtubes CL (cat. no. 19588) - Filter-Tips, 1500 μl (cat. no. 997024) - Filter-Tips, 200 μl (cat. no. 990332) - Filter-Tips, $50 \mu l$ (cat. no. 997120) - Tip disposal bags (cat. no. 9013395) #### For PCR - Rotor-Gene Q 5plex HRM instrument* - Rotor-Gene Q software version 2.02, or higher ^{*} Ensure that instruments have been checked and calibrated according to the manufacturer's recommendations. [†] Please inquire for availability. ### Important Notes ### **General precautions** Always pay attention to the following: - Use sterile pipet tips with filters. - During manual steps, keep tubes closed when possible and avoid contamination. - Thaw all components thoroughly at room temperature (15–25°C) before starting an assay. - When thawed, mix the components (by pipetting repeatedly up and down or by pulse vortexing) and centrifuge briefly. Ensure that no foam or bubbles are present in the reagent tubes. - Do not mix components from kits with different lot numbers. - Make sure that the required adapters are precooled to 2–8°C. - Work quickly and keep PCR reagents on ice or in the cooling block before loading. - Proceed continuously from one part of the workflow to the next. Do not exceed one hour of transfer time between each module (QIAsymphony SP to QIAsymphony AS to Rotor-Gene Q). ### Specimen collection, storage, and transport (i) All samples have to be treated as potentially infectious material. Only the following sample materials are permissible, for which the following rules and particular instructions regarding collection, transport, and storage have to be strictly observed. The internal validation of the *artus* EBV QS-RGQ Kit has been performed using human EDTA plasma samples and human EDTA whole blood samples. Other sample materials are not validated. Please use only the recommended DNA isolation kit (see "Protocol: DNA Isolation on the QIAsymphony SP", page 31) for sample preparation. Using certain sample materials, particular instructions regarding collection, transport, and storage have to be strictly observed. #### Specimen collection Each blood withdrawal causes an injury of blood vessels (arteries, veins, capillaries). Only innocuous and sterile material should be used. For blood withdrawal appropriate disposables are available. For vein punctures, too fine capillary needles should not be employed. Venous blood withdrawal should be carried out on the appropriate parts of the elbow bend, the forearm, or the back of the hand. Blood has to be withdrawn with standard specimen collection tubes (red cap, Sarstedt or equivalent tube of another manufacturer). A volume of 5–10 ml EDTA blood should be withdrawn. Tubes should be mixed overhead directly after sample collection (8 x, do not agitate). Samples from heparinized humans must not be used (see "Interfering substances — plasma" and "Interfering substances — whole blood", below). #### Sample storage For plasma, whole blood should be separated into plasma and cellular components by centrifugation for 20 minutes at 800–1600 x g within 6 hours. The isolated plasma has to be transferred into sterile polypropylene tubes. The sensitivity of the assay can be reduced if you freeze samples as a matter of routine or store them for a longer period of time. #### Sample transport Sample material should be transported in a shatterproof transport container as a matter of principle. Thus, a potential danger of infection due to a leakage of sample can be avoided. The samples should be transported following the local and national instructions for the transport of pathogen material.* The samples should be shipped within 6 hours. It is not recommended to store the samples where they have been collected. It is possible to ship the samples by mail, following the legal instructions for the transport of pathogen material. We recommend the sample transport with a courier. The blood samples should be shipped cooled $(2-8^{\circ}\text{C})$ and the separated plasma deep frozen $(-15 \text{ to } -30^{\circ}\text{C})$. #### Interfering substances — plasma Elevated levels of albumin (≤ 4 g/dl), bilirubin (≤ 30 mg/dl), and lipids (≤ 1 g/dl triglyceride) and hemolytic samples (≤ 2 g/dl hemoglobin) do not influence the system. Heparin affects the PCR. Samples that have been collected in tubes containing heparin as an anticoagulant should not to be used. Also, samples of heparinized patients must not be used. ^{*} International Air Transport Association (IATA). Dangerous Goods Regulations. #### Interfering substances — whole blood Elevated levels of bilirubin (\leq 30 mg/dl), lipids (\leq 1 g/dl triglyceride), and human genomic DNA (\leq 3 μ g/ml) do not influence the system. Heparin affects the PCR. Samples that have been collected in tubes containing heparin as an anticoagulant should not to be used. Also, samples of heparinized patients must not be used. ### Getting started on the QIAsymphony SP/AS instruments Close all drawers and the hoods. Switch on the QIAsymphony SP/AS instruments, and wait until the "Sample Preparation" screen appears and the initialization procedure has finished. Log into the instrument (drawers will unlock). # Loading reagent cartridges (RC) into the "Reagents and Consumables" drawer Reagents for purification of nucleic acids are contained in an innovative reagent cartridge (RC) (see Figure 7). Each trough of the reagent cartridge (RC) contains a particular reagent, such as magnetic particles, lysis buffer, wash buffer, or elution buffer. Partially used reagent
cartridges (RC) can be reclosed with Reuse Seal Strips for later reuse, which avoids generation of waste due to leftover reagents at the end of the purification procedure. **Figure 7. QIAsymphony reagent cartridge (RC).** The reagent cartridge (RC) contains all reagents required for the purification procedure. Before starting the procedure, ensure that the magnetic particles are fully resuspended. Remove the magnetic-particle trough from the reagent cartridge frame, vortex it vigorously for at least 3 minutes, and replace it in the reagent cartridge frame before the first use. Place the reagent cartridge (RC) into the reagent cartridge holder. Place the enzyme rack (ER) into the reagent cartridge holder. Before using a reagent cartridge (RC) for the first time, place the piercing lid (PL) on top of the reagent cartridge (RC) (Figure 8). The piercing lid (PL) is sharp. Take care when placing it onto the reagent cartridge (RC). Make sure to place the piercing lid (PL) onto the reagent cartridge (RC) in the correct orientation. After the magnetic-particle trough cover is removed and the enzyme rack tubes are opened (screw caps can be stored in dedicated slots, see Figure 7), the reagent cartridge (RC) is subsequently loaded into the "Reagents and Consumables" drawer. Figure 8. Easy worktable setup with reagent cartridges (RC). Partially used reagent cartridges (RC) can be stored until needed again, see "Storage" in the QIAsymphony DSP Virus/Pathogen Handbook or the QIAsymphony DNA Handbook. #### Loading plasticware into the "Reagents and Consumables" drawer Sample prep cartridges, 8-Rod Covers (both preracked in unit boxes), and disposable filter-tips (200 μ l tips provided in blue racks, 1500 μ l tips provided in black racks) are loaded into the "Reagents and Consumables" drawer. in Ensure that the covers of the unit boxes are removed before loading the unit boxes into the "Reagents and Consumables" drawer. i Tips have filters to help prevent cross-contamination. Tip rack slots on the QIAsymphony SP worktable can be filled with either type of tip rack. The QIAsymphony SP will identify the type of tips loaded during the inventory scan. Do not refill tip racks or unit boxes for sample prep cartridges or 8-Rod Covers manually before starting another protocol run. The QIAsymphony SP can use partially used tip racks and unit boxes. ### Loading the "Waste" drawer Sample prep cartridges and 8-Rod Covers used during a run are re-racked in empty unit boxes in the "Waste" drawer. Make sure that the "Waste" drawer contains sufficient empty unit boxes for plastic waste generated during the protocol run. Ensure that the covers of the unit boxes are removed before loading the unit boxes into the "Waste" drawer. If you are using 8-Rod Cover boxes for collecting used sample prep cartridges and 8-Rod Covers, ensure that the box spacer has been removed. A bag for used filter-tips must be attached to the front side of the "Waste" drawer. The presence of a tip disposal bag is not checked by the system. Make sure that the tip disposal bag is properly attached before starting a protocol run. For more information, see the user manuals provided with your instrument. Empty the tip bag after a maximum of 96 samples have been processed to avoid a tip jam. A waste container collects liquid waste generated during the purification procedure. The "Waste" drawer can only be closed if the waste container is in place. Dispose of the liquid waste according to your local safety and environment regulations. Do not autoclave the filled waste bottle. Empty the waste bottle after a maximum of 96 samples have been processed. #### Loading the "Eluate" drawer Load the required elution rack into the "Eluate" drawer. Use "Elution slot 1" with the corresponding cooling adapter. For integrated operation, place the elution rack with adapter, including the transfer frame on slot 1. #### Inventory scan Before starting a run, the instrument checks that sufficient consumables for the queued batch(es) have been loaded into the corresponding drawers. ### Preparation of sample material The QIAsymphony DSP Virus/Pathogen Midi Kit is suitable for use with human plasma samples, and the QIAsymphony DNA Mini Kit is suitable for use with human whole blood samples. Prevent formation of foam in or on the samples. Samples should be equilibrated to room temperature (15–25°C) before starting the run. # Preparing carrier RNA (CARRIER)—Buffer AVE (AVE) mixtures for plasma samples Carrier RNA (CARRIER) must be used when using the QIAsymphony DSP Virus/Pathogen Midi Kit. To prepare a carrier RNA (CARRIER) stock solution, add 1350 μ l Buffer AVE (AVE) (provided in 2 ml vials) to the tube containing 1350 μ g lyophilized carrier RNA (CARRIER) to obtain a solution of 1 μ g/ μ l. Dissolve the carrier RNA (CARRIER) thoroughly, divide it into conveniently sized aliquots, and store at 2–8°C for up to 2 weeks. #### Calculating the volume of carrier RNA (CARRIER) mixture per tube The minimum volume of carrier RNA (CARRIER)—Buffer AVE (AVE) mixture must include sufficient additional volume to take into account liquid loss due to pipetting and evaporation. See Table 2 for volumes to use for analysis with the artus EBV QS-RGQ Kit. Tubes containing carrier RNA (CARRIER)–Buffer AVE (AVE) and internal control mixtures are placed in a tube carrier. The tube carrier containing the carrier RNA (CARRIER)–Buffer AVE (AVE) mixture(s) must be placed in slot A of the sample drawer. Up to 8 tubes of the mixture can be used per batch and up to 24 tubes can be used per run of 4 batches. ### Using an internal control An internal control (EBV RG IC) is supplied with the *artus* EBV QS-RGQ Kit. This allows the user both to control the DNA isolation procedure and to check for possible PCR inhibition. If CMV and EBV will be analyzed in the same PCR run on the Rotor-Gene Q (see "Multi-assay runs", page 28), use the CMV IC, included in the artus CMV QS-RGQ Kit (QIAGEN, cat. no. 4503363), for all samples and not the EBV RG IC. The same CMV IC should also be used for assay setup of the PCR controls (step 13 in the assay setup protocol, page 41). Do not use a CMV IC with a different lot number. Using the QIAsymphony DSP Virus/Pathogen Midi Kit or QIAsymphony DNA Mini Kit in combination with the artus EBV QS-RGQ Kit requires introduction of the internal control (EBV RG IC or CMV IC) into the purification procedure to monitor the efficiency of sample preparation and downstream assay. For plasma samples, internal controls must be added with carrier RNA (CARRIER)–Buffer AVE (AVE) mixture, and the total volume of the internal control–carrier RNA (CARRIER)–Buffer AVE (AVE) mixture remains $120 \,\mu$ l. For whole blood samples, internal controls must be diluted in Buffer ATE. A total volume of $60 \mu l$ internal control–Buffer ATE mixture is added per sample. For this application, add the internal control to the isolation as shown in Table 2. This represents addition of internal control to the isolation at a ratio of 0.1 μ l per 1 μ l elution volume. We recommend preparing fresh mixtures for each run just before use. Table 2. Preparation of internal control-carrier RNA (CARRIER) | Component | Plasma samples
Volume (µl) | Whole blood
samples
Volume (µl) | |---|-------------------------------|---------------------------------------| | Stock carrier RNA
(CARRIER) | 5 | 0 | | Internal control* | 9 | 9 | | Buffer AVE | 106 | 0 | | Buffer ATE | 0 | 51 | | Final volume per
sample (excluding
dead volume) | 120 | 60 | | Total volume for n
samples [†] | (n x 120) + 360 [‡] | (n x 60) + 240§ | ^{*} The calculation of the amount of internal control is based on the initial elution volumes $(90 \, \mu l)$. Additional void volume depends on the type of sample tube used. [†] Do not fill more than 1.92 ml (corresponding to a maximum of 13 or 26 samples; this volume is specific for Micro tubes 2.0 ml Type H and Micro tubes 2.0 ml Type I, Sarstedt cat. nos. 72.693 and 72.694). [‡] Internal control mixture corresponding to 3 additional samples (i.e., 360μ l) is required (this volume is specific for Micro tubes 2.0 ml Type H and Micro tubes 2.0 ml Type I, Sarstedt cat. nos. 72.693 and 72.694). $[\]S$ Internal control mixture corresponding to 4 additional samples (i.e., 480 μ l) is required (this volume is specific for Micro tubes 2.0 ml Type H and Micro tubes 2.0 ml Type I, Sarstedt cat. nos. 72.693 and 72.694). ### **Assay Control Sets and Assay Parameter Sets** Assay Control Sets are the combination of a protocol plus additional parameters, such as internal control, for sample purification on the QIAsymphony SP. A default Assay Control Set is preinstalled for each protocol. If CMV and EBV will be analyzed in the same PCR run on the Rotor-Gene Q (see "Multi-assay runs", below), use the appropriate CMV Assay Control Set for the sample purification. Assay Parameter Sets are the combination of an assay definition with additional parameters defined, such as replicate count and number of assay standards, for assay setup on the QIAsymphony AS. ### Multi-assay runs In some cases, it is possible to assay a single sample for more than one pathogen in the same PCR within the QIAsymphony RGQ workflow. This is referred to as a multi-assay run. Several requirements need to be fulfilled for a multi-assay run. The artus EBV QS-RGQ Kit can be used with the artus CMV QS-RGQ Kit (cat. no. 4503363) in a multi-assay run if the following requirements are met. ### Sample preparation on the QIAsymphony SP For the purification of samples to be tested for CMV and EBV using the same eluate, use the CMV IC, included in the artus CMV QS-RGQ Kit, for all samples and not the EBV RG IC. Use the appropriate CMV Assay Control Set for the sample purification. ### Assay setup on the QIAsymphony AS For appropriate quantitation as well as a valid information
given by the internal control, the internal control for the setup of both assays needs to correspond to the one used for sample preparation (CMV IC). Use a CMV IC from the same lot for both sample preparation and for assay setup of the PCR controls (step 13 in the assay setup protocol, page 41). Do not use a CMV IC with a different lot number. #### PCR on the Rotor-Gene Q Due to differences in fluorescence intensities when using 2 different assays in a multi-assay run, it is necessary to perform a gain calibration for each artus detection system separately before starting the PCR run (steps 9–15 in the PCR protocol, pages 50–53). #### Yields of nucleic acids Eluates prepared with carrier RNA (CARRIER) may contain much more carrier RNA (CARRIER) than target nucleic acids. We recommend using quantitative amplification methods to determine yields. ### Storing nucleic acids For short-term storage of up to 24 hours, we recommend storing purified nucleic acids at 2–8°C. For long-term storage of over 24 hours, we recommend storage at –20°C. ### Setting the threshold for the PCR analysis The optimal threshold settings for a given combination of Rotor-Gene Q instrument and artus QS-RGQ Kit should be set empirically by testing each individual combination since it is a relative value depending on the overall diagnostic workflow. As a starting point, the threshold can be set at a preliminary value of 0.04 for the analysis of the first PCR run, but this value should be fine-tuned in a comparative analysis of the next runs of the workflow. The threshold should be set manually just above the background signal of the negative controls and negative samples. The mean threshold value calculated from these experiments will most likely work for the majority of future runs, but the user should nevertheless review the generated threshold value at regular intervals. The threshold value will usually be in the range of 0.03–0.05 and should be rounded to no more than three decimal places. ### **Quantitation** The quantitation standards (EBV RG QS 1–4) in the *artus* EBV QS-RGQ Kit are treated as previously purified samples and the same volume is used (20 μ l). To generate a standard curve on Rotor-Gene Q Instruments, all 4 quantitation standards should be used and defined in the "Edit Samples" dialog box on the Rotor-Gene Q instrument as standards with the specified concentrations (see the instrument user manual). The quantitation standards are defined as copies/ μ I. The following equation has to be applied to convert the values determined using the standard curve into copies/mI of sample material: Result (copies/ml) = $$\frac{\text{Result (copies/}\mu\text{l) x Initial Elution Volume (90 }\mu\text{l})^*}{\text{Sample Volume (ml)}}$$ As a matter of principle the initial sample volume should be entered in the equation above. This has to be considered when the sample volume has been changed prior to the nucleic acid extraction (e.g., reducing the volume by centrifugation or increasing the volume by adding to the volume required for the isolation). ^{*} The calculation is based on the initial elution volumes (90 μ l). ### Protocol: DNA Isolation on the QIAsymphony SP The QIAsymphony DSP Virus/Pathogen Midi Kit (QIAGEN, cat. no. 937055) is validated for viral DNA purification from human plasma and the QIAsymphony DNA Mini Kit (QIAGEN, cat. no. 931236) is validated for viral DNA purification from human whole blood for use with the *artus* EBV QS-RGQ Kit. General information about the protocols is shown in Table 3. Table 3. General protocol information | Kit | QIAsymphony DSP
Virus/Pathogen Midi Kit | QIAsymphony DNA Mini
Kit | |---|--|-------------------------------------| | Sample
material | Plasma | Whole blood | | Sample volume (including excess volume) | 1200 <i>μ</i> Ι | 300 μl | | Protocol name | Cellfree1000_V4_DSP* | VirusBlood200_V4* | | Default Assay
Control Set | ACS_Cellfree1000_V4_DSP artus EBV* | ACS_VirusBlood200_V4_
artus_EBV* | | Elution
volume | 60 μl | 60 μl | | Required
software
version | Version 3.1 or higher | Version 3.5 or higher | ^{*} V4 or higher, as required by the software version used. For a multi-assay run where both CMV and EBV will be assayed in the same PCR, use the appropriate CMV Assay Control Set for the sample purification (ACS_Cellfree1000_V4_DSP artus CMV or ACS Virus Blood200 V4 artus CMV; V4 or higher). ### i Important points before starting - Ensure that you are familiar with operating the QIAsymphony SP/AS instruments. Refer to the user manuals supplied with your instruments for operating instructions. - Before beginning the procedure, read "Important Notes", pages 21–30. - Before using a reagent cartridge (RC) for the first time, check that Buffers QSL2 and QSB1 in the cartridge (RC) do not contain a precipitate. If necessary, remove the troughs containing Buffers QSL2 and QSB1 from the reagent cartridge (RC) and incubate for 30 minutes at 37°C with occasional shaking to dissolve precipitate. Make sure to replace the troughs in the correct positions. If the reagent cartridge (RC) is already pierced, make sure that the troughs are sealed with Reuse Seal Strips and incubate the complete reagent cartridge (RC) for 30 minutes at 37°C with occasional shaking in a water bath.* - Try to avoid vigorous shaking of the reagent cartridge (RC) otherwise foam may be generated, which can lead to liquid-level detection problems. - All components of the QIAsymphony DSP Virus/Pathogen Midi Kit have been shown to be stable onboard the QIAsymphony SP/AS instruments for at least the normal time required to process 96 samples. #### Things to do before starting - Prepare all required mixtures, including mixtures containing carrier RNA (CARRIER) and internal controls just before starting. For more information, see "Preparing carrier RNA (CARRIER)—Buffer AVE (AVE) mixtures for plasma samples", page 26, and "Using an internal control", page 26. - Make sure that the piercing lid (PL) is placed on the reagent cartridge (RC) and the lid of the magnetic-particle trough has been removed or, if using a partially used reagent cartridge (RC), make sure the Reuse Seal Strips have been removed. - Before starting the procedure, ensure that the magnetic particles are fully resuspended. Vortex the trough containing the magnetic particles vigorously for at least 3 minutes before first use. - Before loading the reagent cartridge (RC), remove the cover from the trough containing the magnetic particles and open the enzyme tubes. Make sure that the enzyme rack has been equilibrated to room temperature (15–25°C). Make sure that the piercing lid (PL) is placed on the reagent cartridge (RC) or, if using a partially used reagent cartridge, make sure the Reuse Seal Strips have been removed. - If samples are bar coded, orient samples in the tube carrier so that the bar codes face the bar code reader within the "Sample" drawer at the left side of the QIAsymphony SP. #### **Procedure** Close all drawers and the hoods of the QIAsymphony SP/AS instruments. ^{*} Ensure that instruments have been checked, maintained, and calibrated regularly according to the manufacturer's instructions. 2. Switch on the instruments, and wait until the "Sample Preparation" screen appears and the initialization procedure has finished. The power switch is located at the bottom, left corner of the QIAsymphony SP. - 3. Log in to the instruments. - 4. Ensure the "Waste" drawer is prepared properly (see Table 4), and perform an inventory scan of the "Waste" drawer, including the tip chute and liquid waste. Replace the tip disposal bag if necessary. Table 4. Preparing the "Waste" drawer | Unit box holder 1–4 | Empty unit boxes | |----------------------------|---------------------------------------| | Waste bag holder | Apply waste bag | | Liquid waste bottle holder | Empty and install liquid waste bottle | 5. Load the required elution rack into the "Eluate" drawer. Use only "Elution slot 1" with the corresponding cooling adapter (Cooling Adapter, EMT, v2, Qsym, cat. no. 920730). For integrated operation, place the elution rack with adapter, including the transfer frame on slot 1. 6. Load the required reagent cartridge(s) (RC) and consumables into the "Reagents and Consumables" drawer (see Tables 5 and 6). Numbers of filter-tips given may differ from the numbers displayed in the touchscreen depending on settings. Table 5. Preparing the "Reagents and Consumables" drawer | RC Position
1 and 2 | Load 1 reagent cartridge (RC) for up to 48 plasma samples or 2 new reagent cartridges (RC) for up to 96 plasma samples using the QIAsymphony DSP Virus/Pathogen Midi Kit Load 1 reagent cartridge (RC) for up to 96 whole blood samples using the QIAsymphony DNA Mini Kit | | |-------------------------------|--|--| | Tip rack holder position 1–4 | Load sufficient racks of disposable filter-tips, 200 μ l (see Table 6) | | | Tip rack holder position 5–18 | Load sufficient racks of disposable filter-tips, 1500 μ l (see Table 6) | | | Unit box holder position 1–3 | Load 3 unit boxes containing sample prep cartridges | | | Unit box holder position 4 | Load 1 unit box containing 8-Rod Covers | | Table 6. Required plasticware for 1–4 sample batches | | One
batch, 24
samples* | Two
batches,
48
samples* | Three
batches,
72
samples* | Four
batches,
96
samples* | |---|------------------------------|-----------------------------------|-------------------------------------|------------------------------------| | Plasma sample | es
(QIAsympl | hony DSP Vir | us/Pathogen | Midi Kit) | | Disposable
filter-tips,
200 µl ^{†‡} | 28 | 52 | 76 | 100 | | Disposable
filter-tips,
1500 µl ^{†‡} | 113 | 206 | 309 | 402 | | Sample prep
cartridges [§] | 21 | 42 | 54 | 72 | | 8-Rod
Covers ¹ | 3 | 6 | 9 | 12 | | Whole blood s | amples (QIA | symphony D | NA Mini Kit) | | | Disposable
filter-tips,
200 µl ^{†‡} | 26 | 50 | 74 | 98 | | Disposable
filter-tips,
1500 µl ^{†‡} | 98 | 188 | 278 | 368 | | Sample prep
cartridges [§] | 21 | 42 | 63 | 84 | | 8-Rod
Covers ¹ | 3 | 6 | 9 | 12 | ^{*} Use of more than one internal control tube per batch and performing more than one inventory scan requires additional disposable filter tips. # 7. Perform an inventory scan of the "Reagents and Consumables" drawer. 8. Place the samples into the appropriate tube carrier, and load them into the "Sample" drawer (see Table 7). [†] There are 32 filter-tips/tip rack. [‡] Number of required filter-tips includes filter-tips for 1 inventory scan per reagent cartridge. [§] There are 28 sample prep cartridges/unit box. ¹ There are twelve 8-Rod Covers/unit box. Table 7. Loading samples into the "Sample" drawer | Sample type | Plasma | Whole blood | |---|--|-------------| | Sample volume
(including excess
volume) | 1200 <i>μ</i> Ι | 300 μΙ | | Sample tubes | Micro tubes 2.0 ml Type H or Micro
tubes 2.0 ml Type I (Sarstedt, cat. nos.
72.693 and 72.694) | | | Insert | Tube Insert 3B (cat. no. 9242083) | | 9. Place the tube(s) containing the carrier RNA (CARRIER)—Buffer AVE (AVE) mixture (for plasma samples) or Buffer ATE (for whole blood samples), including internal control, into the tube carrier and load into slot A of the "Sample" drawer. For more information about preparing the mixture, see "Preparing carrier RNA (CARRIER)—Buffer AVE (AVE) mixtures for plasma samples", page 26, and "Using an internal control", page 26. If CMV and EBV will be analyzed in the same PCR run on the Rotor-Gene Q (see "Multi-assay runs", page 28), use the CMV IC, included in the artus CMV QS-RGQ Kit (QIAGEN, cat. no. 4503363), for all samples and not the EBV RG IC. # 10. Using the touchscreen, enter the required information for each batch of samples to be processed. Enter the following information: - Sample information - Protocol to be run (choose Assay Control Set "ACS_Cellfree1000_V4_DSP artus EBV"* for plasma or "ACS_VirusBlood200_V4_artus_EBV"* for whole blood from category "artus QS-RGQ") - Elution volume 60 μ l (see Table 8) and output position "slot 1" - Tube(s) containing the carrier RNA (CARRIER)—Buffer AVE (AVE) mixture (for plasma samples) or Buffer ATE (for whole blood samples), including internal control (choose IC name "ACS_Cellfree1000_V4_DSP artus EBV"* for plasma or "ACS_VirusBlood200_V4_artus_EBV"* for whole blood) ^{*} V4 or higher, as required by the software version used. For a multi-assay run where both CMV and EBV will be assayed in the same PCR, use the appropriate CMV IC name (ACS_Cellfree1000_V4_DSP artus CMV or ACS_Virus_Blood200_V4_artus_CMV; V4 or higher). After information about the batch has been entered, the status changes from "LOADED" to "QUEUED". As soon as one batch is queued the "Run" button appears. Table 8. Preselected elution volume | Preselected elution volume (µI)* | Initial elution volume (µl)† | |----------------------------------|------------------------------| | 60 | 90 | ^{*} The elution volume preselected for the protocol. This is the minimum accessible volume of eluate in the final elution tube. ### 11. Press the "Run" button to start the purification procedure. All processing steps are fully automated. At the end of the protocol run, the status of the batch changes from "RUNNING" to "COMPLETED". 12. When sample processing is complete, either manually remove the elution rack from the "Eluate" drawer (independent operation), or perform direct transfer of the elution rack to the QIAsymphony AS via the transfer module (integrated operation). For independent operation, remove the elution rack from the slot on the touchscreen, and then open the "Eluate" drawer and manually remove the elution rack. For integrated operation, press "Transfer" to transfer the elution rack from slot 1 of the QIAsymphony SP to slot 2 of the QIAsymphony AS. We recommend immediately (≤60 min) proceeding with assay setup on the QIAsymphony AS after the run has finished. Depending on temperature and humidity, eluates left in the QIAsymphony SP after the run is completed may experience condensation or evaporation. For short-term storage of up to 24 h, we recommend storing purified nucleic acids at 2–8°C. For long-term storage of over 24 h, we recommend storage purified nucleic acids at –20°C. Result files are generated for each elution rack. 13. If a reagent cartridge (RC) is only partially used, seal it with the provided Reuse Seal Strips and close tubes containing proteinase K with screw caps immediately after the end of the protocol run to avoid evaporation. For more information about storage of partially used reagent cartridges (RC), see "Storage" in the QIAsymphony DSP Virus/Pathogen Handbook or QIAsymphony DNA Handbook. [†] The initial volume of elution solution required to ensure that the actual volume of eluate is the same as the preselected volume. # 14. Discard used sample tubes, plates, and waste according to your local safety regulations. See the QIAsymphony DSP Virus/Pathogen Handbook and QIAsymphony DNA Handbook for safety information. - 15. Close the instrument drawers, and proceed with assay setup on the QIAsymphony AS (page 39). - 16. Clean the QIAsymphony SP during the assay setup on the QIAsymphony AS or later. For integrated operation, clean all instruments at the end of the completed workflow. Follow the maintenance instructions in the QIAsymphony SP/AS User Manual — General Description. Make sure to carry out maintenance regularly to minimize the risk of cross-contamination. ### Protocol: Assay Setup on the QIAsymphony AS The QIAsymphony AS carries out assay setup for 6–216 reactions. Samples processed on the QIAsymphony SP can be transferred automatically to the QIAsymphony AS (integrated operation). For extra flexibility, the QIAsymphony SP and AS can also be operated independently.* Details of the assay are shown in Table 9. Table 9. Assay parameters using the artus EBV QS-RGQ Kit | Process information | Details | |---------------------------|---| | Sample input material | Eluate | | Master mix volume | 30 μl | | Template volume | 20 μΙ | | Number of reactions | 6–24 [†] | | Runtime [‡] | For 6 reactions: approximately 9 minutes For 72 reactions: approximately 35 minutes | | Required software version | Version 3.1 or higher | [†] For assay setup for EBV, up to 216 (9 x 24) assays can be set up in one run on the QIAsymphony AS. ### i Important points before starting - Before beginning the procedure, read "Important Notes", pages 21–30. - The reagent volumes are optimized for 24 reactions per kit per run. - Before each use, all reagents need to be thawed completely, mixed (by repeated up and down pipetting or by quick vortexing), and centrifuged for at least 3 s at 6800 x g. Avoid foaming of the reagents. - For a multi-assay run where both CMV and EBV will be assayed in the same PCR, make sure that the CMV IC, from the artus CMV QS-RGQ Kit, was used in the purification process. Use a CMV IC from the same lot for both sample preparation and for assay setup of the PCR controls (step 13). Do not use a CMV IC with a different lot number. [‡] Assays were run with each reaction unique (no replicates), and master mix was prepared by the instrument for an assay run including one template, 4 assay standards, and one no template control (NTC). ^{*} The QIAsymphony SP and AS remain physically connected during independent operation. - Eluates from the sample preparation and all components of the artus EBV QS-RGQ Kit have been shown to be stable onboard the instrument for at least the normal time required for sample purification for 96 samples and assay setup of 216 assays, including up to 60 min transfer time from the QIAsymphony SP to the QIAsymphony AS and up to 60 min transfer time from the QIAsymphony AS to the Rotor-Gene Q. - Work quickly and keep PCR reagents on ice or in the cooling block before loading. #### **Procedure** - 1. Insert the tip chute. - 2. Discard the tip disposal bag. - 3. Install an empty tip disposal bag. - 4. Switch to the assay setup user interface by pressing the "Switch" button in the status bar. - 5. Start the assay definition process. For independent operation, press "New". For integrated operation, a message will appear asking whether to use the elution rack as a sample rack. Press "Yes" to confirm. The screens on the touchscreen guide the user through the assay definition process in a step-by-step fashion. - 6. Assign the sample rack to a "Sample" slot by selecting the rack file from the respective run on the QIAsymphony SP. - If the elution rack has been automatically transferred to the QIAsymphony AS, the rack file will be automatically assigned and the "Sample Rack(s)" screen of the assay setup user interface will already be filled out. - 7. Check sample rack for sample, EC+ and EC- positions, sample IDs, and volumes. - 8. Select the Assay Parameter Set to use in the run (see Table 10). Table 10. Assay information using the artus EBV QS-RGQ Kit | Release information | Details | |---------------------|----------------------| | Category | artus QS-RGQ | | Assay Parameter Set | artus EBV QS-RGQ_V1* | ^{*} V1 or higher, as required by the software version used. For a multi-assay run where both CMV and EBV will be assayed in the same eluate in the same PCR, both "artus EBV
QS-RGQ_V1" and "artus CMV QS-RGQ_V1" Assay Parameter Sets (V1 or higher) need to be assigned to the samples. ### 9. Assign the Assay Parameter Set to samples. The Assay Parameter Set defines the parameters of the assay setup. For a multi-assay run where both CMV and EBV will be assayed for the same eluate in the same PCR, both "artus EBV QS-RGQ_V1"[†] and "artus CMV QS-RGQ_V1"[†] Assay Parameter Sets need to be assigned to the samples. ### 10. Define assay rack(s). At this stage, assay rack(s) can be loaded onto the "Assay" slot(s) (see Table 12). ### 11. Check the temperature of the cooling positions. When the target cooling temperatures are reached, the slots will appear areen. ### 12. Combine all tubes of EBV RG Master in a single kit into one tube. Viscous reagents can be difficult to handle with manual pipets. Make sure to transfer the entire volume of EBV RG Master in the tube. # 13. Fill each reagent tube with the required volume of appropriate reagent according to the loading information given by the instrument software. Before each use, all reagents need to be thawed completely, mixed (by repeated up and down pipetting or by quick vortexing), and centrifuged for at least 3 s at 6800 x g. Avoid bubbles or foaming, which could cause detection errors. Work quickly and keep PCR components on ice or in the cooling block before loading. For a multi-assay run where both CMV and EBV will be assayed in the same PCR, make sure that the CMV IC, from the artus CMV QS-RGQ Kit, was used in the purification process. Use a CMV IC from the same lot for both sample preparation and for assay setup of the PCR controls. Do not use a CMV IC with a different lot number. [†] V1 or higher, as required by the software version used. ## 14. Place the reagent tubes, without lids, into the appropriate positions of precooled adapters for reagents (see Table 11). Table 11. Consumables | Consumables | Name on
touchscreen | For use with
adapter/reagent
holder | |---|---|---| | Strip Tubes and
Caps, 0.1 ml (250) | QIA#981103
StripTubes 0.1 | RG Strip Tubes 72 QS | | Tubes, conical, 2 ml, | QIA#997102 | Reagent holder 1 QS | | Qsym AS (500)† | *T2.0 ScrewSkirt [‡] | Reagent holder 2 QS | | Tube, conical, 5 ml, | QIA#997104 | Reagent holder 1 QS | | Qsym AS (500)*† | *T5.0 ScrewSkirt [‡] | Reagent holder 2 QS | | Reagent Bottles,
30ml, Qsym AS (50)* | QIA#997108
*Bottle 30ml [‡] | Reagent holder 2 QS | | Elution Microtubes | QIA#19588 * | Elution Microtube Rack | | CL (24 x 96) | EMTR | QS | ^{*} For master mix components, system-prepared master mix, assay standards, and assay controls. - 15. Open the "Eluate and Reagents" and "Assays" drawers. - 16. Load the prepared reagent adapter into the appropriate slot. Enter a kit bar code for the assay through the "List view" of the "Loading Reagents" screen. - 17. If not already done, place the Strip Tubes into the precooled RG Strip Tubes 72 QS adapter (see Table 12), and place into the appropriate slot(s). [†] Alternatively, the Sarstedt tubes described on page 20 can be used. [‡] The suffix "(m)" in the touchscreen indicates that liquid level calculations for the respective tube have been optimized for reagents forming a concave meniscus. Table 12. Adapters and reagent holders | Rack/reagent
holder | Name | Number
required* | |------------------------|---------------------------|---------------------| | Sample rack | Elution Microtube Rack QS | 1 | | Reagent holders | Reagent holder 1 QS | 1 | | Assay racks | RG Strip Tubes 72 QS | 1 | ^{*} Calculated for an assay run with 72 reactions. 18. If the elution rack has not already been transferred to the QIAsymphony AS (see step 12 of the purification protocol, page 37), place the Elution Microtubes CL into the precooled Elution Microtube Rack QS adapter (see Table 12), and place the prepared adapter into the slot indicated. For independent operation, remove the elution rack from the slot on the touchscreen, and then open the "Eluate" drawer of the QIAsymphony SP and manually remove the elution rack. 19. Load disposable filter-tips into the "Eluate and Reagents" and "Assays" drawers, according to the required number of each tip type (see Tables 13 and 14). Load tip racks starting with tip slots 1, 2, and 3 in the "Eluate and Reagents" drawer, and then load tip racks into tip slots 7, 8, and 9 in the "Assays" drawer. Table 13. Filter-tips | Consumables | Name on touchscreen | |---------------------------------|---------------------| | Filter-Tips, 1500 μl (1024) | 1500 μΙ | | Filter-Tips, 200 μ l (1024) | 200 μl | | Filter-Tips, 50 μl (1024) | 50 μΙ | Table 14. Consumables consumption* | Consumable | Number for 24 reactions | Number for 72 reactions | |---------------------------|-------------------------|-------------------------| | Filter-Tips, 1500 μ l | 4 | 5 | | Filter-Tips, 200 μ l | 9 | 8 | | Filter-Tips, 50 μ l | 25 | 73 | | Tip Disposal Bags | 1 | 1 | ^{*} This table provides example consumables consumption for an assay run with the following specifications: 19 or 67 templates, 4 assay standards, one no template control (NTC), samples with internal control (IC), master mix prepared by the instrument. ① Filter-tip consumption can be affected by some processes on the QIAsymphony AS (e.g., liquid-level detection). Larger numbers of tips are required for a multi-assay run where both CMV and EBV will be assayed in the same PCR. - 20. Close the "Eluate and Reagents" and "Assays" drawers. - 21. Upon closing each drawer, press "Yes" to start the inventory scan for each drawer. The inventory scan checks the slots, adapters, filter-tips, and the tip chute. If required, correct any errors. - 22. Press "Queue". Monitoring of the cooling starts. - 23. Wait until the target cooling temperatures are reached. When the target cooling temperatures are reached, the slots will appear green. - 24. Press "Run" to start the run. - 25. After the run is finished, press "Remove" in the assay setup "Overview" screen. Open the "Assays" drawer and unload the assay rack(s). - 26. Download the result and cycler files. - 27. Proceed to "Protocol: PCR and Data Analysis on the Rotor-Gene Q", page 45. - 28. Perform the regular maintenance of the QIAsymphony AS during the PCR run on the Rotor-Gene Q or later. For integrated operation, clean all instruments at the end of the completed workflow. Follow the maintenance instructions in the QIAsymphony SP/AS User Manual — General Description. Make sure to carry out maintenance regularly to minimize the risk of cross-contamination. # Protocol: PCR and Data Analysis on the Rotor-Gene Q ### (i) Important points before starting - Before beginning the procedure, read "Important Notes", pages 21–30. - Take time to familiarize yourself with the Rotor-Gene Q before starting the protocol. See the instrument user manual. - Make sure that at all 4 quantitation standards as well as at least one negative control (Water, PCR grade) are included per PCR run. To generate a standard curve, use all 4 quantitation standards supplied (EBV RG QS 1–4) for each PCR run. #### **Procedure** - 1. Close the PCR tubes, and place them in the 72-Well Rotor of the Rotor-Gene Q. Make sure to transfer the Rotor-Gene Q 4-strip tubes in the correct orientation, so that the position indices of the cooling adapter and the rotor match. Make sure that the locking ring (accessory of the Rotor-Gene Instrument) is placed on top of the rotor to prevent accidental opening of the tubes during the run. - 2. Transfer the cycler file from the QIAsymphony AS to the Rotor-Gene Q computer. - 3. For the detection of EBV DNA, create a temperature profile according to the following steps. | Setting the general assay parameters | Figures 9–11 | |--|---------------| | Initial activation of the hot-start enzyme | Figure 12 | | Amplification of the DNA (touchdown PCR) | Figure 13 | | Adjusting the fluorescence channel sensitivity | Figures 14–20 | | Starting the run | Figure 21 | All specifications refer to the Rotor-Gene Q software version 2.02. Please find further information on programming Rotor-Gene Q instruments in the instrument user manual. In the illustrations these settings are framed in bold black. 4. First, open the "New Run Wizard" dialog box (Figure 9). Check the "Locking Ring Attached" box and click "Next". Figure 9. The "New Run Wizard" dialog box. 5. Select 50 for the PCR reaction volume and click "Next" (Figure 10). Figure 10. Setting the general assay parameters. 6. Click the "Edit Profile" button in the next "New Run Wizard" dialog box (Figure 11), and program the temperature profile as shown in Figures 11–13). Figure 11. Editing the profile. Figure 12. Initial activation of the hot-start enzyme. **Figure 13. Amplification of the DNA.** Make sure to activate the touchdown function for 10 cycles in the Annealing step. - 7. The detection range of the fluorescence channels has to be determined according to the fluorescence intensities in the PCR tubes. Click "Gain Optimisation" in the "New Run Wizard" dialog box (see Figure 11) to open the "Auto-Gain Optimisation Setup" dialog box. Set the calibration temperature to 65 to match the annealing temperature of the amplification program (Figure 14). - 8. If you are performing assay setup for a single assay, click "Start" (Figure 14) and proceed directly to step 16, page 53. For a multiassay run where both CMV and EBV will be assayed in the same PCR, proceed to step 9 to adjust the fluorescence channel intensities manually. Figure 14. Adjusting the fluorescence channel sensitivity. Auto-Gain Optimisation Setup X Optimisation: Auto-Gain Optimisation will read the fluoresence on the inserted sample at different gain levels until it finds one at which the fluorescence levels are acceptable. The range of fluorescence you are
looking for depends on the chemistry you are performing. Set temperature to 65 🕂 degrees. Optimise All Optimise Acquiring Perform Optimisation Before 1st Acquisition Perform Optimisation At 65 Degrees At Beginning Of Run Channel Settings: Add.. Edit.. Max Gain Name Tube Position Min Reading Max Reading Min Gain Green 5FL 10FI -10 10 Remove Yellow 5FI 10FI -10 10 Remove All 9. Click "Edit" (Figure 15) to edit the fluorescence channels. Figure 15. Adjusting the fluorescence channel intensity manually for every fluorescence channel at different tube positions for different assays (CMV and EBV). <u>H</u>elp Close 10. Set the tube position for a tube for the first *artus* assay (e.g., CMV). Set the tube position for all fluorescence channels, and click "OK" (Figure 16). Figure 16. Setting the tube position. Manual... <u>S</u>tart 11. Click "Start" to begin the gain optimization for the first artus assay (Figure 17). Figure 17. Starting the gain optimization. 12. A new "Running Auto-Gain Optimisation" window opens. Wait until "Completed" appears in this window (Figure 18). Write down the selected gain values for both channels, and then click "Close" (Figure 18). Figure 18. Gain optimization completed. Note gain values (in this case, 1.33 for both fluorescence channels). - 13. Repeat steps 9–12 for a tube position for the second *artus* assay (e.g., EBV). - 14. Click "Edit Gain" to edit the gain values manually (Figure 19). Figure 19. Editing the gain values manually. 15. Select the lowest gain value for Cycling Green noted in step 12, and enter this value manually in the "Gain for Green" window (Figure 20). Select the lowest gain value for Cycling Yellow noted in step 12, and enter this value manually in the "Gain for Yellow" window. Figure 20. Manually entering the lowest gain values. 16. The gain values determined by the channel calibration (or manually assigned) are saved automatically and are listed in the last menu window of the programming procedure (Figure 21). Click "Start Run". Figure 21. Starting the run. - 17. After starting the run, import the information from the cycler file by clicking the ("Open") button, or edit the samples manually. - 18. After the run is finished, analyze the data. The following results (18a, 18b, and 18c) are possible. - For a multi-assay run where both CMV and EBV were assayed in the same PCR, make sure that samples are analyzed separately for CMV and EBV, with the corresponding quantitation standards. Do not define standards of different artus PCR systems at the same time. See the artus CMV QS-RGQ Kit Handbook for interpretation of CMV assay results. In case of initially increasing or decreasing fluorescence, the "Eliminate cycles before" function has to be adjusted up to the first signal. In certain cases, the "Ignore first" function has to be adjusted up to 10 cycles. This may be necessary if the baseline adjustment does not result in a homogeneous baseline covering all signals but has fluorescence signals spread over a broader range. Using the "Ignore first" function will give reliable results, comparable to those with unaffected samples. For technical assistance and more information, please see our Technical Support Center at www.qiagen.com/Support or call one of the QIAGEN Technical Service Departments or local distributors (see back cover or visit www.qiagen.com). Examples of positive and negative PCR reactions are given in Figure 22 and Figure 23. 18a. A signal is detected in fluorescence channel Cycling Green. The result of the analysis is positive: the sample contains EBV DNA. In this case, the detection of a signal in the Cycling Yellow channel is dispensable, since high initial concentrations of EBV DNA (positive signal in the Cycling Green channel) can lead to a reduced or absent fluorescence signal of the internal control in the Cycling Yellow channel (competition). 18b. In fluorescence channel Cycling Green no signal is detected. At the same time, a signal from the internal control appears in the Cycling Yellow channel. In the sample no EBV DNA is detectable. It can be considered negative. In the case of a negative EBV PCR, the detected signal of the internal control rules out the possibility of PCR inhibition. 18c. No signal is detected in the Cycling Green or in the Cycling Yellow channels. No result can be concluded. Information regarding error sources and their solution can be found in "Troubleshooting Guide", page 56. Figure 22. Detection of the quantitation standards (EBV RG QS 1–4) in fluorescence channel Cycling Green. NTC: No template control (negative control). Figure 23. Detection of the internal control (IC) in fluorescence channel Cycling Yellow with simultaneous amplification of the quantitation standards (EBV RG QS 1–4). NTC: No template control (negative control). ### **Troubleshooting Guide** This troubleshooting guide may be helpful in solving any problems that may arise. For more information, see also the Frequently Asked Questions page at our Technical Support Center: www.qiagen.com/FAQ/FAQList.aspx. The scientists in QIAGEN Technical Services are always happy to answer any questions you may have about either the information and protocols in this handbook or sample and assay technologies (for contact information, see back cover or visit www.qiagen.com). ### Comments and suggestions ### **General handling** Error message displayed in the touchscreen If an error message is displayed during a protocol run, refer to the user manuals supplied with your instruments. # Precipitate in reagent trough of opened cartridge of the QIAsymphony DSP Virus/Pathogen Midi Kit or QIAsymphony DNA Mini Kit a) Buffer evaporation Excessive evaporation may lead to increased salt concentration or decreased alcohol concentrations in buffers. Discard reagent cartridge (RC). Make sure to seal buffer troughs of a partially used reagent cartridge (RC) with Reuse Seal Strips when not being used for purification. b) Storage of reagent cartridge (RC) Storage of reagent cartridge (RC) under 15°C may lead to formation of precipitates. If necessary, remove the troughs containing Buffers QSL2 and QSB1 from the reagent cartridge (RC) and incubate in a water bath* at 37°C for 30 min with occasional shaking to dissolve precipitate. Make sure to replace the troughs in the correct positions. If the reagent cartridge (RC) is already pierced, make sure that the troughs are reclosed with Reuse Seal Strips and incubate the complete reagent cartridge (RC) in a water bath* at 37°C for 30 min with occasional shaking. ^{*} Ensure that instruments have been checked, maintained, and calibrated regularly according to the manufacturer's instructions. ### Low yield of nucleic acids - a) Magnetic particles were not completely resuspended - Before starting the procedure, ensure that the magnetic particles are fully resuspended. Vortex for at least 3 min before use. - b) Frozen samples were not mixed properly after thawing - Thaw frozen samples with mild agitation to ensure thorough mixing. - c) Carrier RNA (CARRIER) not added - Reconstitute carrier RNA (CARRIER) in Buffer AVE (AVE) and mix with appropriate volume of Buffer AVE (AVE) as described in "Preparing carrier RNA (CARRIER)—Buffer AVE (AVE) mixtures" starting on page 26. Repeat the purification procedure with new samples. - d) Degraded nucleic acids - Samples were stored incorrectly or subjected to too many freeze–thaw cycles. Repeat the purification procedure with new samples. - e) Incomplete sample lysis - QSB1 do not contain precipitates. If necessary, remove the troughs containing Buffers QSL1 and QSB1 from the reagent cartridge (RC) and incubate for 30 min at 37°C with occasional shaking to dissolve precipitate. If the reagent cartridge (RC) is already pierced, make sure that the troughs are reclosed with Reuse Seal Strips, and incubate the complete reagent cartridge (RC) for 30 min at 37°C with occasional shaking in a water bath.* - f) Clogging of pipet tip due to insoluble material - Insoluble material was not removed from the sample prior to starting the QlAsymphony purification procedure. To remove insoluble material for viral applications, centrifuge the sample at 3000 x g for 1 min, and transfer the supernatant to a new sample tube. ^{*} Ensure that instruments have been checked, maintained, and calibrated regularly according to the manufacturer's instructions. ### QIAsymphony AS detects insufficient Master Not all of the EBV RG Master transferred to tube Combine all tubes of EBV RG Master in a single kit into one tube. Viscous reagents can be difficult to handle with manual pipets. Make sure to transfer the entire volume of EBV RG Master in the tube. For viscous reagents, we recommend aspirating an extra volume of 5% when using manual pipets (e.g., adjust the pipet to 840 μ l for an 800 μ l volume). Alternatively, after slowly dispensing the liquid and performing a blowout at the target tube's wall, remove the tip from the liquid, release the pipet plunger, and wait for an additional 10 s. Residual liquid will flow down the tip and can be blown out by pressing the pipet plunger a second time. The use of PCR grade filter-tips labeled as "low retention" can improve the recovery of liquid. # No signal with positive controls (EBV RG QS 1–4) in fluorescence channel Cycling Green - a) The selected fluorescence channel for PCR data analysis does not comply with the protocol - For data analysis select the fluorescence channel Cycling Green for the analytical EBV PCR and the fluorescence channel Cycling Yellow for the internal control PCR. - b) Incorrect programming of the temperature profile of the Rotor-Gene instrument - Compare the temperature profile with the protocol. See "Protocol: PCR and Data Analysis on the Rotor-Gene Q", page 45. - c) Incorrect configuration of the PCR
- Make sure that assay setup was performed correctly and that the correct Assay Parameter Set was used. Repeat the PCR, if necessary. See "Protocol: Assay Setup on the QlAsymphony AS", page 39. - d) The storage conditions for one or more kit components did not comply with the instructions given in "Storage" (page 6) - Check the storage conditions and the expiration date (see the kit label) of the reagents and use a new kit, if necessary. - e) The artus EBV QS-RGQ Kit has expired - Check the storage conditions and the expiration date (see the kit label) of the reagents and use a new kit, if necessary. Weak or no signal of the internal control of a negative sample subjected to purification using the QIAsymphony DSP Virus/Pathogen Midi Kit or QIAsymphony DNA Mini Kit in fluorescence channel Cycling Yellow and simultaneous absence of a signal in channel Cycling Green - a) The PCR conditions do not comply with the protocol - Check the PCR conditions (see above) and repeat the PCR with corrected settings, if necessary. - b) The PCR was inhibited - Make sure that you use the validated isolation method (see "Protocol: DNA Isolation on the QIAsymphony SP", page 31) and closely follow the instructions. - c) DNA was lost during extraction - An absent signal of the internal control can indicate the loss of DNA during the extraction. Make sure that you use the validated isolation method (see "Protocol: DNA Isolation on the QIAsymphony SP", page 31) and closely follow the instructions. - ① See also "Low yield of nucleic acids", above. - d) The storage conditions for one or more kit components did not comply with the instructions given in "Storage" (page 6) - Check the storage conditions and the expiration date (see the kit label) of the reagents and use a new kit, if necessary. e) The artus EBV QS-RGQ Kit has expired Check the storage conditions and the expiration date (see the kit label) of the reagents and use a new kit, if necessary. ## Signals with the negative controls in fluorescence channel Cycling Green of the analytical PCR a) Contamination occurred during preparation of the PCR Repeat the PCR with new reagents in replicates. if possible, close the PCR tubes directly after addition of the sample to be tested. Make sure that work space and instruments are decontaminated at regular intervals. b) Contamination occurred during extraction Repeat the extraction and PCR of the sample to be tested using new reagents. Make sure that work space and instruments are decontaminated at regular intervals. ### References QIAGEN maintains a large, up-to-date online database of scientific publications utilizing QIAGEN products. Comprehensive search options allow you to find the articles you need, either by a simple keyword search or by specifying the application, research area, title, etc. For a complete list of references, visit the QIAGEN Reference Database online at www.qiagen.com/RefDB/search.asp or contact QIAGEN Technical Services or your local distributor. ### **Ordering Information** | Product | Contents | Cat. no. | |--|--|----------| | artus EBV QS-RGQ Kit
(24) | For 24 reactions: Master,
4 Quantitation Standards, Internal
Control, Water (PCR grade) | 4501363 | | | us/Pathogen Midi Kit — for
n of viral nucleic acids or bacterial
es | | | QIAsymphony DSP
Virus/Pathogen Midi Kit
(96) | For up to 96 preps of $1000 \mu l$ each: Includes 2 reagent cartridges and enzyme racks and accessories | 937055 | | QIAsymphony DNA M
of DNA from 1–96 san | ini Kit — for automated purification | | | QIAsymphony DNA
Mini Kit (192) | For up to 192 preps of 200 μ l each: Includes 2 reagent cartridges and enzyme racks and accessories | 931236 | | QIAsymphony RGQ sy | stem | | | QIAsymphony RGQ,
System | QlAsymphony SP, QlAsymphony AS,
Rotor-Gene Q MDx 5plex HRM,
required accessories and consumables,
installation and training | 9001850 | | QIAsymphony SP/AS in | nstruments and accessories | | | QIAsymphony SP | QIAsymphony sample prep module,
1-year warranty on parts and labor | 9001297 | | QIAsymphony AS | QlAsymphony assay setup module,
1-year warranty on parts and labor | 9001301 | | Sample Prep
Cartridges, 8-well
(336) | 8-well sample prep cartridges for use with the QIAsymphony SP | 997002 | | 8-Rod Covers (144) | 8-Rod Covers for use with the QIAsymphony SP | 997004 | | Cooling Adapter, EMT,
v2, Qsym | Cooling adapter for EMT racks; for use with the QIAsymphony SP/AS instruments (software version 3.1 or higher) | 920730 | | Product | Contents | Cat. no. | |---|--|----------| | Reuse Seal Set (20) | Reuse seal sets for sealing partly used QIAsymphony reagent cartridges | 997006 | | Insert, 2.0ml v2,
samplecarr. (24), Qsym | Secondary tube adapter (for 2 ml screw-cap tubes, tube insert 3b) for use with the QIAsymphony SP tube carrier | 9242083 | | Elution Microtubes CL
(24 x 96) | Nonsterile polypropylene tubes (0.85 ml maximum capacity, less than 0.7 ml storage capacity, 0.4 ml elution capacity); 2304 in racks of 96; includes cap strips | 19588 | | Cooling Adapter,
Reagent Holder 1,
Qsym | Adapter for holding 18 x 2 ml conical tubes, and 6 x 5 ml conical tubes; for use with the QIAsymphony SP/AS instruments (software version 3.1 or higher) | 9018090 | | Cooling Adapter,
Reagent Holder 2,
Qsym | Adapter for holding 18 x 2 ml conical tubes, 2 x 5 ml conical tubes, and 2 x Reagent Bottles, 30 ml; for use with the QIAsymphony SP/AS instruments (software version 3.1 or higher) | 9018089 | | Cooling Adapter, RG
Strip Tubes 72, Qsym | Adapter for holding 18 strips of 4 tubes; for use with the QIAsymphony SP/AS instruments (software version 3.1 or higher) | 9018092 | | Tubes, conical, 2 ml,
Qsym AS (500) | Conical tubes (2 ml) for holding reagent; for use with the QIAsymphony AS | 997102* | | Tube, conical, 5 ml,
Qsym AS (500) | Conical tubes (5 ml) for holding reagent; for use with the QIAsymphony AS | 997104* | | Reagent Bottles, 30 ml,
Qsym AS (50) | Reagent bottles (30 ml) with lids; for use with the QIAsymphony AS | 997108 | | Filter-Tips, 1500 μ l (1024) | Disposable Filter-Tips, racked;
(8 x 128). For use with the
QIAsymphony SP | 997024 | ^{*} Please inquire for availability. | Product | Contents | Cat. no. | |--|---|----------| | Filter-Tips, 200 μ l (1024) | Disposable Filter-Tips, racked;
(8 x 128). For use with the QIAcube
and the QIAsymphony SP | 990332 | | Filter-Tips, 50 μ l (1024) | Disposable Filter-Tips, racked (8 x 128).
For use with the QIAsymphony AS | 997120 | | Tip Disposal Bags (15) | Tip disposal bags for use with the QIAsymphony SP/AS instruments | 9013395 | | Rotor-Gene Q and acc | essories | | | Rotor-Gene Q MDx
5plex HRM System | Real-time PCR cycler and High
Resolution Melt analyzer with 5
channels (green, yellow, orange, red,
crimson) plus HRM channel, laptop
computer, software, accessories, 1-year
warranty on parts and labor | Inquire | | Rotor-Gene Q MDx
5plex HRM Platform | Real-time PCR cycler and High
Resolution Melt analyzer with 5
channels (green, yellow, orange, red,
crimson) plus HRM channel, laptop
computer, software, accessories, 1-year
warranty on parts and labor; includes
installation and training | Inquire | | Rotor-Gene Q 5plex
HRM System | Real-time PCR cycler and High
Resolution Melt analyzer with 5
channels (green, yellow, orange, red,
crimson) plus HRM channel, laptop
computer, software, accessories, 1-year
warranty on parts and labor | 9001650 | | Rotor-Gene Q 5plex
HRM Platform | Real-time PCR cycler and High
Resolution Melt analyzer with 5
channels (green, yellow, orange, red,
crimson) plus HRM channel, laptop
computer, software, accessories, 1-year
warranty on parts and labor; includes
installation and training | 9001580 | | Strip Tubes and Caps,
0.1 ml (250) | 250 strips of 4 tubes and caps for 1000 reactions | 981103 | | Product | Contents | Cat. no. | |--|--|----------| | Strip Tubes and Caps,
0.1 ml (2500) | 10 x 250 strips of 4 tubes and caps for 10,000 reactions | 981106 | For up-to-date licensing information and product-specific disclaimers, see the respective QIAGEN kit handbook or user manual. QIAGEN kit handbooks and user manuals are available at www.qiagen.com or can be requested from QIAGEN Technical Services or your local distributor. This page intentionally left blank The purchase of this product allows the purchaser to use it for the performance of diagnostic services for human in vitro diagnostics. No general patent or other license of any kind other than this specific right of use from purchase is granted hereby. Trademarks: QIAGEN®, QIAsymphony®, artus®, Rotor-Gene® (QIAGEN Group). The artus EBV QS-RGQ Kit is a CE-marked diagnostic kit according to the European In Vitro Diagnostic Directive 98/79/EC. Not available in all countries. #### **Limited License Agreement** Use of this product signifies the agreement of any purchaser or user of the artus EBV QS-RGQ Kit to the following terms: - The artus EBV QS-RGQ Kit may
be used solely in accordance with the artus EBV QS-RGQ Kit Handbook and for use with components contained in the Kit only. QIAGEN grants no license under any of its intellectual property to use or incorporate the enclosed components of this Kit with any components not included within this Kit except as described in the artus EBV QS-RGQ Kit Handbook and additional protocols available at www.giagen.com. - 2. Other than expressly stated licenses, QIAGEN makes no warranty that this Kit and/or its use(s) do not infringe the rights of third-parties. - 3. This Kit and its components are licensed for one-time use and may not be reused, refurbished, or resold. - 4. QIAGEN specifically disclaims any other licenses, expressed or implied other than those expressly stated. - 5. The purchaser and user of the Kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the Kit and/or its components. For updated license terms, see www.qiagen.com. © 2010 QIAGEN, all rights reserved. #### www.qiagen.com **Australia** Orders 1-800-243-800 Fax 03-9840-9888 Technical 1-800-243-066 **Austria** Orders 0800-28-10-10 Fax 0800-28-10-19 Technical 0800-28-10-11 **Belgium** • Orders 0800-79612 • Fax 0800-79611 • Technical 0800-79556 **Brazil** Orders 0800-557779 Fax 55-11-5079-4001 Technical 0800-557779 Canada = Orders 800-572-9613 = Fax 800-713-5951 = Technical 800-DNA-PREP (800-362-7737) China = Orders 86-21-3865-3865 = Fax 86-21-3865-3965 = Technical 800-988-0325 **Denmark** • Orders 80-885945 • Fax 80-885944 • Technical 80-885942 Finland - Orders 0800-914416 - Fax 0800-914415 - Technical 0800-914413 France = Orders 01-60-920-926 = Fax 01-60-920-925 = Technical 01-60-920-930 = Offers 01-60-920-928 Germany - Orders 02103-29-12000 - Fax 02103-29-22000 - Technical 02103-29-12400 Hong Kong = Orders 800 933 965 = Fax 800 930 439 = Technical 800 930 425 **Ireland =** Orders 1800 555 049 **=** Fax 1800 555 048 **=** Technical 1800 555 061 Italy - Orders 800-789-544 - Fax 02-334304-826 - Technical 800-787980 **Japan** Telephone 03-6890-7300 Fax 03-5547-0818 Technical 03-6890-7300 Korea (South) = Orders 080-000-7146 = Fax 02-2626-5703 = Technical 080-000-7145 **Luxembourg** Orders 8002-2076 Fax 8002-2073 Technical 8002-2067 **Mexico** ■ Orders 01-800-7742-639 ■ Fax 01-800-1122-330 ■ Technical 01-800-7742-436 The Netherlands = Orders 0800-0229592 = Fax 0800-0229593 = Technical 0800-0229602 **Norway** Orders 800-18859 Fax 800-18817 Technical 800-18712 **Singapore** • Orders 1800-742-4362 • Fax 65-6854-8184 • Technical 1800-742-4368 **Spain** Orders 91-630-7050 Fax 91-630-5145 Technical 91-630-7050 **Sweden** • Orders 020-790282 • Fax 020-790582 • Technical 020-798328 **Switzerland** Orders 055-254-22-11 Fax 055-254-22-13 Technical 055-254-22-12 **UK** • Orders 01293-422-911 • Fax 01293-422-922 • Technical 01293-422-999 **USA** ■ Orders 800-426-8157 ■ Fax 800-718-2056 ■ Technical 800-DNA-PREP (800-362-7737) ### Sample & Assay Technologies