Pool-testing 600,000 people at once
Ahmed, whose lab specializes in microbial source tracking in water, otherwise known as MST, had long handled a variety of viral environmental samples from across Queensland. At the first reports of COVID-19 spreading outside of China, he had started work on an analytical method to detect SARS-CoV-2 RNA in wastewater, anticipating the value of an early detection system. The traces were bound to be minuscule when the number of cases was low, but he believed his highly sensitive molecular method could still detect them in raw sewage.
Ahmed tweeted that they should get in touch. Later that afternoon, three researchers from the University of Queensland rang him. As part of routine drug monitoring, hourly samples were already being collected at treatment plants handling wastewater from Brisbane, Queensland’s capital. From these, they created 24-hour composite samples, each murky container representing hundreds of thousands of people. All they needed was the test.
The samples arrived at the CSIRO laboratory the next day. After concentrating and then extracting the tiny amounts of RNA from the raw sewage, RT-qPCR tests found what they were looking for: faint but definite traces of SARS-CoV-2 RNA. Using a simple model, they roughly estimated that 171 to 1,090 people in the catchment area, which covers about 600,000 people, were potentially infected. It was the first confirmed evidence of SARS-CoV-2 RNA in wastewater in Australia, and, says Ahmed, “the results were proof this method could potentially be used to identify hotspots and infected people.” They had struck upon what might prove to be a cost-effective way to pool-test entire communities for the disease. When Ahmed and his colleagues published their proof-of-concept research, it created ripples in the scientific community.