High-Molecular Weight DNA
GENOMIC DNA RESOURCE CENTER

High-Molecular Weight DNA

Long-read sequencing, such as PacBio or Oxford Nanopore sequencing, generates reads of several thousand base pairs, making them ideal for resolving complex genomic regions. Sample preparation prior to long-read sequencing presents several challenges that can impact the quality and accuracy of sequencing data, as long-read sequencing is highly sensitive to DNA quality and integrity.

Contaminants, degradation, or shearing of DNA can lead to poor sequencing results. Therefore, ensuring that the input DNA is of high quality, quantity and free from contaminants is highly critical. At the same time, extracting HMW DNA of sufficient size, quantity and quality can be tedious and time-intensive.

We are proud to offer various sample preparation kits aimed to minimize costs and shorten processing times without sacrificing DNA quality and integrity.

We offer dedicated kits for HMW DNA extraction, depending on your sample and gDNA size requirement. Check out our selection guide below to choose what works best for you.
Product
Method
Typical gDNA
Size
Sample Materials (input)
Typical yields
MagAttract HMW KitBeads50–100 kbBlood: 200 μL
Tissue: up to 25 mg
Bacterial cells: 2x109
Blood: 4–8 μg per 200 µl, depending on the number of nucleated cells
Tissue: 0.5–2.8 μg/mg
Gram-negative bacteria: up to 14 μg (from up to 2 x 109 cells)
Gram-positive bacteria: up to 3.5 μg (from up to 2 x 109 cells)
QIAGEN Genomic-tips
(only Midi & Maxi) &
QIAGEN Blood &
Cell Culture DNA Kit
anion
exchange
50–100 kbBlood: 1–20 mL
Cells: 2x107–1x108
Tissue: 100–400 mg
Bacterial cells: 2.2x1010–1x1011
Yeast cells: 7 x109–3.5x1010
Blood: 15–20 µg per mL, depending on the number of nucleated cells
Cells: 3–5 µg per 1-2x106 cells
Tissue: 0.5–3 µg / mg
Tissue: 0.5–3 µg / mg
Gram positive bacteria: up to 400 μg (from up to1 x1011 cells)
Yeast cells: up to 400 μg (from up to 3.5 x 1010 cells)
Puregene Kitsprecipitation~ 100 kbBlood: 200 µl–10 mL
Cells: up to 5 x 107
Tissue: up to 200 mg
Blood: 15–50 μg per 1 mL, depending on the number of nucleated cells
Cells: 5–10 µg per 1-2 x 106 cells
Tissue: 0.5–10 µg/mg
PAXgene Blood DNA Kitprecipitation~ 100 kbBlood: 8.5 mLBlood: 15–50 μg per mL, depending on the number of nucleated cells
QIAamp DNA Blood Mini Kitspin column10–20 kbBlood: 200 μLBlood: 4–12 μg per 200 µL, depending on the number of nucleated cells
QIAamp DNA Mini Kitspin column10–20 kbCells: up to 5 x 106
Tissue: up to 25 mg
Cells: 15–30 µg per 5x106 cells
Tissue: 0.3–5 µg/mg
QIAamp PowerFecal Pro DNA Kitspin column10–20 kbStool or biosolids: up to 250 mgStool: 4–20 µg per 200 mg, sample dependent
DNeasy Blood & Tissue Kitsspin column10–20 kbBlood: 100 µL
Cells: up to 5 x 106
Tissue: up to 25 mg
Blood: 3–6 μg per 100 µL, depending on the number of nucleated cells
Cells: 15–25 µg per 2 x 106 cells
Tissue: 0.5–3 µg/mg
DNeasy PowerMax Soil Kitspin column10–20 kbSoil: up to 10 gSoil: 5–10 µg per g, sample dependent
MagAttract HMW DNA Kit
MagAttract HMW DNA Kit
The kit uses a convenient, straightforward procedure to deliver high yields of HMW DNA in as little as 70 minutes.
VIEW PRODUCT
Puregene Kits
Puregene Kits
For purification of archive-quality HMW DNA (100–200 kb) from a wide variety of sample types
VIEW PRODUCTS
QIAGEN Genomic-Tips
QIAGEN Genomic-Tips
Gravity-flow, anion-exchange tips that allow efficient purification of HMW DNA (50–100 kb) from a wide range of samples
VIEW PRODUCTS
Using QIAGEN kits used for PacBio sequencing
  1. Oikawa R, Watanabe Y, Yotsuyanagi H, Yamamoto H, Itoh F. DNA methylation at hepatitis B virus integrants and flanking host mitochondrially encoded cytochrome C oxidase III. Oncol Lett. 2022;24(6):424.
  2. Ansai S, Mochida K, Fujimoto S, et al. Genome editing reveals fitness effects of a gene for sexual dichromatism in Sulawesian fishes. Nat Commun. 2021;12(1):1350.
  3. Matsumura H, Hsiao MC, Lin YP, et al. Long-read bitter gourd (Momordica charantia) genome and the genomic architecture of nonclassic domestication. Proc Natl Acad Sci U S A. 2020;117(25):14543-14551.
  4. Qian X, Gunturu S, Sun W, et al. Long-read sequencing revealed cooccurrence, host range, and potential mobility of antibiotic resistome in cow feces. Proc Natl Acad Sci U S A. 2021;118(25):e2024464118.
  5. Rhie A, McCarthy SA, Fedrigo O, et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021;592(7856):737-746.
  6. Bajic M, Ravishankar S, Sheth M, et al. The first complete genome of the simian malaria parasite Plasmodium brasilianum. Sci Rep. 2022;12(1):19802.
  7. Jebb D, Huang Z, Pippel M, et al. Six reference-quality genomes reveal evolution of bat adaptations. Nature. 2020;583(7817):578-584. 
  8. Hardwick SA, Hu W, Joglekar A, et al. Single-nuclei isoform RNA sequencing unlocks barcoded exon connectivity in frozen brain tissue. Nat Biotechnol. 2022;40(7):1082-1092.
  9. Rai A, Hirakawa H, Nakabayashi R, et al. Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nat Commun. 2021;12(1):405.
Using QIAGEN kits for ONT sequencing
  1. Höijer I, Emmanouilidou A, Östlund R, et al. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations. Nat Commun. 2022;13(1):627. 
  2. Goenka SD, Gorzynski JE, Shafin K, et al. Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencing. Nat Biotechnol. 2022;40(7):1035-1041.
  3. Zuin J, Roth G, Zhan Y, et al. Nonlinear control of transcription through enhancer-promoter interactions. Nature. 2022;604(7906):571-577.
  4. Eskenazi A, Lood C, Wubbolts J, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun. 2022;13(1):302.
  5. Wu F, Speth DR, Philosof A, et al. Unique mobile elements and scalable gene flow at the prokaryote-eukaryote boundary revealed by circularized Asgard archaea genomes. Nat Microbiol. 2022;7(2):200-212.
  6. Israeli O, Guedj-Dana Y, Shifman O, et al. Rapid Amplicon Nanopore Sequencing (RANS) for the Differential Diagnosis of Monkeypox Virus and Other Vesicle-Forming Pathogens. Viruses. 2022;14(8):1817.
  7. Xiao C, Chen Z, Chen W, et al. Personalized genome assembly for accurate cancer somatic mutation discovery using tumor-normal paired reference samples. Genome Biol. 2022;23(1):237. 
  8. Petersen C, Sørensen T, Westphal KR, et al. High molecular weight DNA extraction methods lead to high quality filamentous ascomycete fungal genome assemblies using Oxford Nanopore sequencing. Microb Genom. 2022;8(4):000816.
  9. Vacca D, Fiannaca A, Tramuto F, et al. Direct RNA Nanopore Sequencing of SARS-CoV-2 Extracted from Critical Material from Swabs. Life (Basel). 2022;12(1):69.
  10. Zheng S, Gillespie E, Naqvi AS, et al. Modulation of CD22 Protein Expression in Childhood Leukemia by Pervasive Splicing Aberrations: Implications for CD22-Directed Immunotherapies. Blood Cancer Discov. 2022;3(2):103-115. 
  11. Shang L, Li X, He H, et al. A super pan-genomic landscape of rice. Cell Res. 2022;32(10):878-896.
  12. Yang H, Wu J, Huang X, et al. ABO genotype alters the gut microbiota by regulating GalNAc levels in pigs. Nature. 2022;606(7913):358-367.
  13. Rech GE, Radío S, Guirao-Rico S, et al. Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila. Nat Commun. 2022;13(1):1948. 
  14. Isidro J, Borges V, Pinto M, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus [published correction appears in Nat Med. 2022 Oct;28(10):2220-2221]. Nat Med. 2022;28(8):1569-1572.
  15. Player R, Verratti K, Staab A, et al. Optimization of Oxford Nanopore Technology Sequencing Workflow for Detection of Amplicons in Real Time Using ONT-DART Tool. Genes (Basel). 2022;13(10):1785.
  16. Stefan CP, Hall AT, Graham AS, Minogue TD. Comparison of Illumina and Oxford Nanopore Sequencing Technologies for Pathogen Detection from Clinical Matrices Using Molecular Inversion Probes. J Mol Diagn. 2022;24(4):395-405.
  17. Trigodet F, Lolans K, Fogarty E, et al. High molecular weight DNA extraction strategies for long-read sequencing of complex metagenomes. Mol Ecol Resour. 2022;22(5):1786-1802.
  18. Mgwatyu Y, Cornelissen S, van Heusden P, Stander A, Ranketse M, Hesse U. Establishing MinION Sequencing and Genome Assembly Procedures for the Analysis of the Rooibos (Aspalathus linearis) Genome. Plants (Basel). 2022;11(16):2156. 
  19. Bickhart DM, Kolmogorov M, Tseng E, et al. Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities. Nat Biotechnol. 2022;40(5):711-719.
  20. Sereika M, Kirkegaard RH, Karst SM, et al. Oxford Nanopore R10.4 long-read sequencing enables the generation of near-finished bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. Nat Methods. 2022;19(7):823-826.